STORMWATER REPORT

FOR

GROTON FARMS 500 MAIN STREET

In

GROTON, MASSACHUSETTS

PREPARED BY: DILLIS & ROY CIVIL DESIGN GROUP, INC. 1 MAIN STREET, SUITE 1 LUNENBURG, MA 01462

PREPARED FOR: 500 MG LLC 6 Lyberty Way Westford, MA 01886

REVISED: JUNE 16TH, 2023

FEBRUARY 9TH, 2023 CDG PROJECT # 6842

TABLE OF CONTENTS

1.0	Project Narrative	3
1.1	Project Type	3
1.2	Purpose and Scope	3
1.3	LID Measures	3
1.4	Site Description	3
1.5	Proposed Stormwater Management System	5
1.6	Methods of Analysis	6
2.0	Stormwater Standards Compliance	6
2.1	Standard 1 – Untreated Discharge	6
2.2	Standard 2 – Peak Rate Attenuation	6
2.3	Standard 3 – Recharge	7
2.4	Standard 4 – Water Quality	8
2.5	Standard 5 – Land Uses with Higher Pollutant Loads	8
2.6	Standard 6 – Critical Areas	8
2.7	Standard 7 – Redevelopment	8
2.8 Coi	Standard 8 – Construction Period Pollution Prevention Plan and Erosion and Sedim ntrol	
2.9	Standard 9 – Operation and Maintenance Plan	9
2.1	0 Standard 10 – Prohibition of Illicit Discharge	9
3.0	Appendices	10
App	pendix A - Locus Map	11
App	pendix B - Checklist for Stormwater Report	12
App	pendix C - Soils Data	13
App	pendix D - Existing Conditions Hydrologic Calculations	14
App	pendix E - Proposed Conditions Hydrologic Calculations	15
App	pendix F – Stormwater Calculations	16
App	pendix G – Construction Period Pollution Prevention	17
App	pendix H - Operation and Maintenance Plan	18
App	pendix I - Long Term Pollution Prevention Plan	19
4.0	Plans	21
Pre	-development Watershed Plan	22
Pos	t-development Watershed Plan	23

The Applicant, 500 MG LLC is proposing the construction of a residential development on the north side of Route 119 just northerly of the intersection of Mill Street & Main Street. The proposed development consists of 16 quadplex units (1,220 SF ea.), 16 quadplex units (643 SF ea.), 3 apartment buildings (17,818 sf ea.), and clubhouse building (4,950 sf). The proposed work is located on Assessor's Map 216- Block 94, 95, & 96. The proposed scope of construction also includes a private roadway, on-site parking, clubhouse area with associated amenities, stormwater management systems, and new utility connections with their associated appurtenances.

1.2 Purpose and Scope

This report has been prepared to comply with the requirements of the Stormwater Management Standards incorporated in the Massachusetts Wetlands Protection Act Regulations, 310 CMR 10.00. These standards are intended to promote increased groundwater recharge and prevent stormwater discharges from causing or contributing to the pollution of surface waters and ground waters of the Commonwealth. The standards aim to accomplish these goals by encouraging the greater use of low impact development (LID) techniques and improving the operation and maintenance of stormwater best management practices (BMP).

This report addresses compliance of the proposed development with each of the ten stormwater standards, it provides calculations to support the compliance information, and it provides a Long-Term Pollution Prevention Plan and an Operation and Maintenance Plan for the stormwater management system.

1.3 LID Measures

Care has been taken to lay out the proposed site in a manner that works with existing topography. BMPs, have been specified to manage the stormwater runoff. Stormwater from the proposed impervious surface locations is routed to constructed stormwater wetlands or wet basin via land flow, curb and gutter systems, or the proposed drainage pipe system. The stormwater areas will reduce run off rates below pre-developed rates while providing water quality pretreatment by sediment forebays.

1.4 Site Description

The subject site is found on the North side of Route 119 just northerly of the intersection of Mill Street & Main Street. An existing internal road runs from Main Street and travels northeast connecting to the onsite parking lot and existing building. The existing 101,570 SF building is located towards center of the site.

An existing parking lot is located towards the northern corner of the site and wraps around the eastern side of the building. The southwestern half of the site is primarily undeveloped grassed area with clusters of woods. Multiple wetland areas as shown on the attached Site Plans are present on site located to the north, east, and west of the proposed development. Under existing conditions, the wetlands receive untreated stormwater sheet flow and point discharges.

An existing detention basin located adjacent to the building collects and treats a substantial portion of the existing impervious area on site. An outlet pipe runs from the subject detention basin under the existing paved parking area to the north where it then discharges into an existing wetland system. A smaller stormwater management area is located just north of the northern parking area where it receives run-off from portions of the existing parking lot & tributary undeveloped overland flow. The remaining stormwater runoff generated from the existing impervious area that is not collected will sheet flow towards the surrounding wetland systems without any form of treatment.

The NRCS soil survey information indicates that all of the site is underlain by soils classified as belonging to Hydrologic Soil Groups A (Carlton Fine Sandy Loam), B (Charlton-Hollis-Rock outcrop & Hollis-Rock Outcrop-Charlton complex), C (Paxton Fine Sandy Loam) & D (Swansea Muck, Freetown Muck, Ridgebury Fine Sandy Loam & Whitman Fine Sandy Loam).

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Soils belonging to group B have a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Soils belonging to group D have a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

Please refer to Appendix C for further information regarding the soils on-site & existing test hole data.

1.5 Proposed Stormwater Management System

Runoff from the proposed development will be conveyed and treated through a combination of Best Management Practices (BMP's). The following is a brief discussion of each conveyance and treatment BMP proposed.

Deep Sump Hooded Catch Basin

Deep sump hooded catch basins are proposed to convey the runoff from the proposed paved areas and roofs to the stormwater wetlands or wet basin. These catch basins will discharge to manholes and conventional storm drains. Please refer to Sediment Loading Calculations in Appendix F.

Constructed Stormwater Wetlands

Constructed stormwater wetlands are stormwater wetland systems that maximize the removal of pollutants from stormwater runoff through wetland vegetation uptake, retention and settling. Constructed stormwater wetlands temporarily store runoff in shallow pools that support conditions suitable for the growth of wetland plants. Proposed constructed stormwater wetlands must be used with other BMPs, such as sediment forebays, as proposed.

Wet Basin

The proposed reconstructed wet basin utilizes a permanent pool of water as the primary mechanism to treat stormwater runoff. The permanent pool has been set at an elevation to intercept the existing groundwater table to ensure sufficient permanent pool volume. The pool allows sediments to settle (including fine sediments) and removes soluble pollutants. The wet basin has been designed to provide additional dry storage capacity to control peak discharge rates. The wet basin allows incoming stormwater to displace the water present in the pool. This stormwater remains until displaced by runoff from another storm event. Increased retention time allows particulates, including fine sediments, to settle out of the water column. The permanent pool also serves to protect deposited sediments from resuspending during large storm events. A sediment forebay designed at the entrance of the basin was included to decrease the velocity of flow and increase the settlement of heavy solids prior to the basin. Riprap will also be installed at the inlet of the sediment forebays and the outlet of the basin to control the overflow of stormwater into the adjacent wetlands and will reduce the potential for scouring.

Grassed Swales

The grassed channels have been designed with a relatively flat (2.0%) slope to reduced runoff velocity and increase hydraulic residency time to promote particulate settling. The grassed channel has been provided with a sediment forebay for stormwater pretreatment. The grass swales will receive runoff from the proposed roofs along the townhomes & sheet flow from the entrance road. The entrance road has been designed with a 2% cross-slope to pitch towards a grassed swale system to convey the runoff to Stormwater Wetland #1's sediment forebay for additional treatment.

1.6 Methods of Analysis

The United States Department of Agriculture Natural Resources Conservation Service (NRCS) soil cover complex methods (TR-20) were employed to compute runoff quantities for the subject property. Watershed analysis demonstrate that natural drainage patterns drain toward the wetlands (design point). Two design points were modeled to analyze the total runoff from the site. HydroCAD 10.0 computer software was employed in this hydrologic analysis.

A comparison of pre- and post-development runoff quantities at the analysis points were performed in order to design a stormwater management system that will limit peak rates of runoff from the development to predevelopment levels for 24-hour rainfall events of 2-, 10-, 25- and 100-year return frequencies. Watershed boundaries for existing conditions are depicted on the attached Predevelopment Watershed Plan. Post-Developed watershed boundaries are indicated on the Postdevelopment Watershed Plan.

2.0 Stormwater Standards Compliance

2.1 Standard 1 – Untreated Discharge

The stormwater management system for the proposed development will not result in any new discharges of untreated stormwater to wetland resource areas. Stormwater management structures have been designed such that there is no erosion or scour to wetland resource areas or waters of the Commonwealth.

2.2 Standard 2 – Peak Rate Attenuation

Hydrologic calculations for existing and proposed site conditions are included in Appendices D and E respectively. Calculations for 24-hour rainfall events of 2-, 10-, 25- and 100-year return frequencies are provided. The "NRCC Extreme Precipitation in New York & New England" rainfall rates were used in the hydraulic model. The following table provides a summary of peak rates of runoff related to each of these storms for the design point through which all runoff from the subject property must flow. For all rainfall events considered, the proposed stormwater management system will control runoff from the development such that corresponding peak flows at the design point will be lower than predeveloped rates.

	Pre-Developed (ft ³ / sec)	Post-Developed (ft ³ / sec)		
Design Point "A"				
2-Year	20.88	13.42		
10-Year	38.37	27.87		
25-Year	53.28	42.05		
100-Year	85.26	76.09		

Table 1: Wetland Design Point Ru	noff Summary
----------------------------------	--------------

2.3 Standard 3 – Recharge

The NRCS soil survey information indicates that all of the site is underlain by soils classified as belonging to Hydrologic Soil Groups A (Carlton Fine Sandy Loam), B (Charlton-Hollis-Rock outcrop & Hollis-Rock Outcrop-Charlton complex), C (Paxton Fine Sandy Loam) & D (Swansea Muck, Freetown Muck, Ridgebury Fine Sandy Loam & Whitman Fine Sandy Loam). On-site groundwater recharge is provided by (3) infiltration trenches designed to receive the runoff associated with the proposed roofs of the apartment buildings. Each infiltration trench has been designed with an exfiltration rate of 2.41 inches/hour (Loamy/Medium Sand) as confirmed by the attached in-situ soil testing logs. Please refer to Appendix C for further information regarding the soils on-site & existing test hole data.

The recharge standard is being met in virtue of the fact that the impervious area is being reduced on the site. The following table shows a summary of the existing and proposed runoff volumes being discharged offsite. In all design storms, the amount of runoff volume is being reduced under the proposed site conditions. This means that more stormwater is being recharged on site as compared to the preexisting conditions.

	Pre-Developed (acre-feet)	Post-Developed (acre-feet)	Increase in Recharge Volume (acre-feet)				
Design Point "A"							
2-Year	3.067	2.596	0.471				
10-Year	5.690	5.043	0.647				
25-Year	7.911	7.202	0.709				
100-Year	12.748	11.979	0.769				

Table 1: Wetland Design Point Volume Summary

Recharge calculations can be found in Appendix F.

2.4 Standard 4 – Water Quality

TSS removal calculations have been provided (Appendix F) showing that the proposed TSS removal efficiency from these areas will be >80% using the stormwater wetlands/wet basins with the sediment forebay & deep sump hooded catch basins for pretreatment. This BMP train is proposed for both stormwater wetlands along with the proposed wet basin (as documented). Four TSS calculation sheets have been provided. The sheet with a deep sump catch basin into a sediment forebay shows proper pre-treatment before entering the stormwater wetlands/wet basin. An additional pretreatment sheet has been included documenting the proper pretreatment for the collected sheet flow from the entrance road into the grassed channel / sediment forebay. The sheet with deep sump catch basin into a stormwater wetland & wet basin shows there is enough TSS removal within the whole system.

2.5 Standard 5 – Land Uses with Higher Pollutant Loads

The current and proposed uses of the subject site do not constitute land use with higher potential pollutant load, thus Standard 5 does not apply to the proposed project.

2.6 Standard 6 – Critical Areas

The proposed project is located within the Petapawag Watershed. The proposed stormwater management system has been designed in accordance with the specifications and sizing methodologies in Volumes 2 and 3 of the Massachusetts Stormwater Handbook. Please refer to Appendix F for required water quality volumes of 1.0-inch times the proposed impervious area. Proper pre-treatment of at least 44% has been achieved with the proposed BMP trains (as recommended in Table CA 1 Standard 6 within the Massachusetts Stormwater Manual). Please refer to Appendix F for TSS calculations regarding the proposed treatment methods.

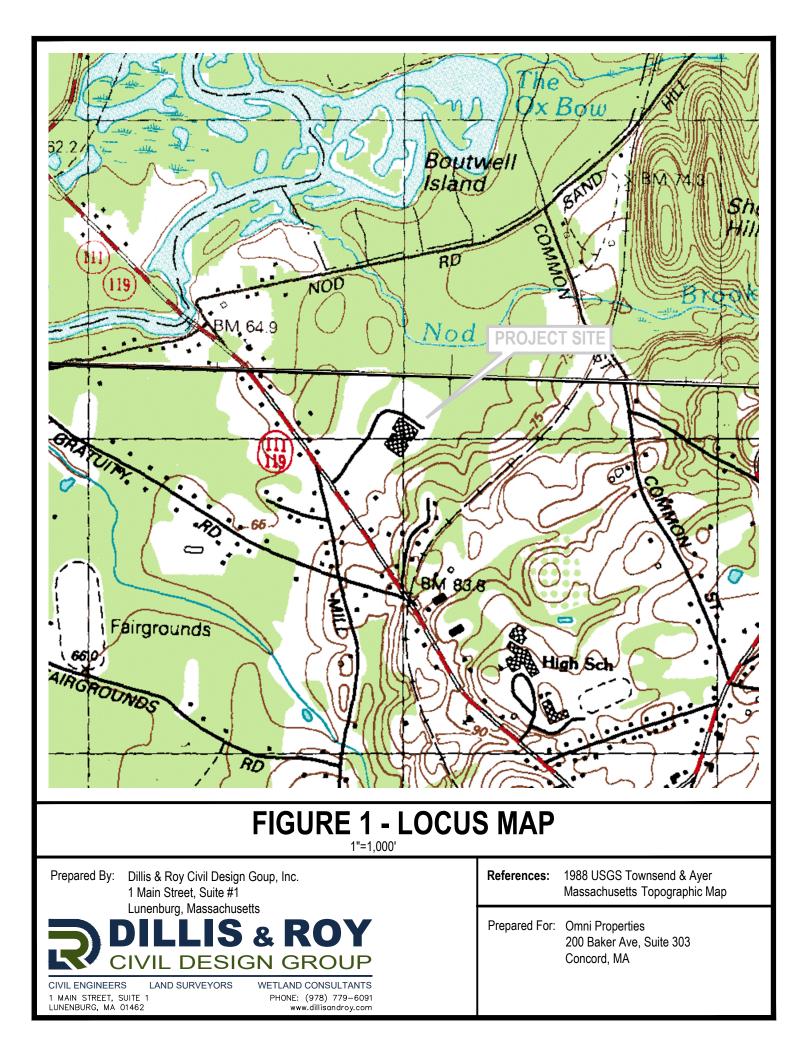
2.7 Standard 7 – Redevelopment

The proposed project does meet the standards to be considered a Redevelopment project, however the stormwater management system has been designed to meet the standards set forth for a new development project. All requirements have been met with this proposal.

2.8 Standard 8 – Construction Period Pollution Prevention Plan and Erosion and Sediment Control

The project is subject to the filing of an Environmental Protection Agency Notice of Intent (EPA NOI), and the work will be pursuant to the NPDES Construction General Permit for disturbance to an area greater than 1 acre, a copy of the Stormwater Pollution Prevention Plan (SWPPP) will be submitted prior to construction. The SWPPP will satisfy the Standard 8 Construction Period Pollution prevention. And Erosion and Sediment Control Plan is included in the attached Site Plans.

2.9 Standard 9 – Operation and Maintenance Plan


Refer to Appendix H for a complete copy of the Stormwater Operation and Maintenance Plan.

2.10 Standard 10 – Prohibition of Illicit Discharge

An illicit discharge statement will be prepared after approvals are received and prior to construction.

3.0 Appendices

Appendix A - Locus Map

Appendix B - Checklist for Stormwater Report

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

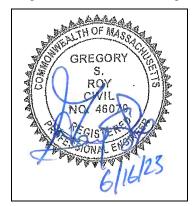
To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.


Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Longterm Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

Signature and Date

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Redevelopment

Mix of New Development and Redevelopment

Although the project would meet the standards as a redevelopment project, the site stormwater system has been designed to fully comply with new construction standards.

Checklist (continued)

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

	No disturbance to any Wetland Resource Areas
	Site Design Practices (e.g. clustered development, reduced frontage setbacks)
	Reduced Impervious Area (Redevelopment Only)
	Minimizing disturbance to existing trees and shrubs
	LID Site Design Credit Requested:
	Credit 1
	Credit 2
	Credit 3
	Use of "country drainage" versus curb and gutter conveyance and pipe
	Bioretention Cells (includes Rain Gardens)
	Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
	Treebox Filter
	Water Quality Swale
	Grass Channel
	Green Roof
	Other (describe):
Sta	ndard 1: No New Untreated Discharges

No new untreated discharges

- Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Checklist (continued)

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

 Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge	the impervious area is being reduced on the site. The following table shows a summary of the existing and proposed runoff volumes being discharged offsite. In all design storms,
Soil Analysis provided.	the amount of runoff volume is being reduced under the proposed site conditions. This means that more stormwater is
Required Recharge Volume calculation provided.	being recharged on site as compared to the preexisting conditions.

Required Recharge volume reduced through use of the LID site Design Credits.

Sizing the infiltration, BMPs is based on the following method: Check the method used.

Static Simple Dynamic

Dynamic Field¹

Runoff from all impervious areas at the site discharging to the infiltration BMP.

Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.

Recharge BMPs have been sized to infiltrate the Required Recharge Volume.

Recharge BMPs have been sized to infiltrate the Required Recharge Volume only to the maximum
extent practicable for the following reason:

Site is comprised sole	ely of C and D soils and/or bedrock at the land surfa	ace
------------------------	---	-----

M.G.L. c. 21E sites pursuant to 310 CMR 40.0000

Solid Waste Landfill pursuant to 310 CMR 19.000

Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.

Calculations showing that the infiltration BMPs will drain in 72 hours are provided.

Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Checklist (continued)

Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
 - is within the Zone II or Interim Wellhead Protection Area
 - is near or to other critical areas
 - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
 - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Checklist (continued)			
Standard 4: Water Quality (continued)			

	The BMP	is sized	(and	calculations	provided)	based	on:
--	---------	----------	------	--------------	-----------	-------	-----

- The 1/2" or 1" Water Quality Volume or
- The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
- ☐ The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
- A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.

Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)

- The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report.
- The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted **prior to** the discharge of stormwater to the post-construction stormwater BMPs.
- The NPDES Multi-Sector General Permit does *not* cover the land use.
- LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
- All exposure has been eliminated.
- All exposure has *not* been eliminated and all BMPs selected are on MassDEP LUHPPL list.
- The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.

Standard 6: Critical Areas

- The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
- Critical areas and BMPs are identified in the Stormwater Report.

Checklist (continued)

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:

Limited Project	t
-----------------	---

- Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.
- Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area
- Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
- Bike Path and/or Foot Path
- Redevelopment Project
- Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.

☐ The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

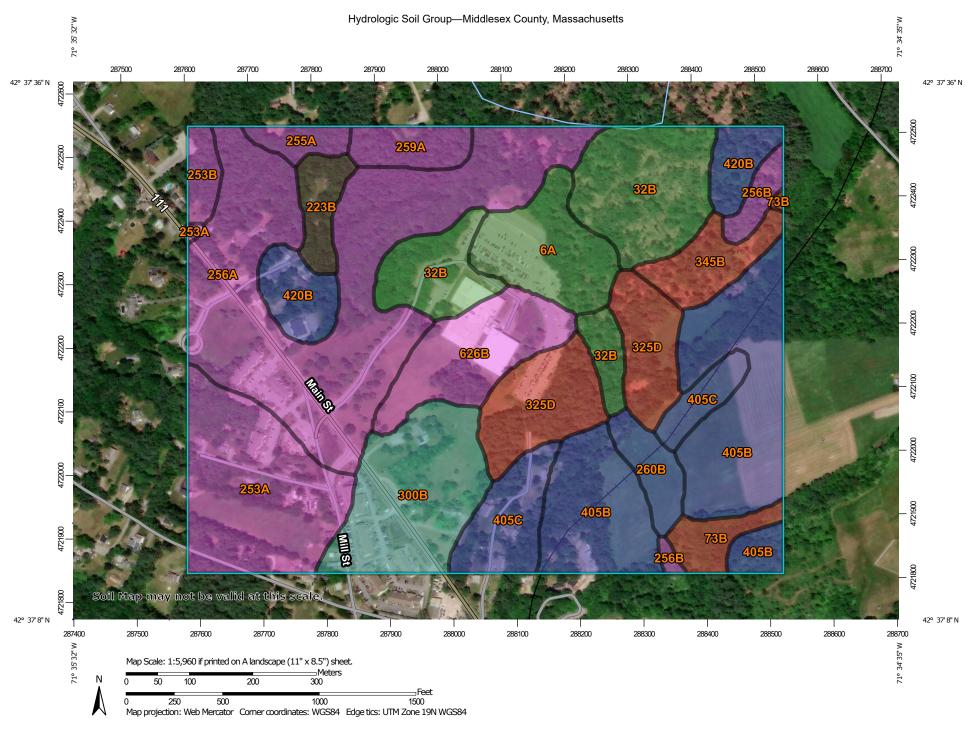
Checklist (continued)

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

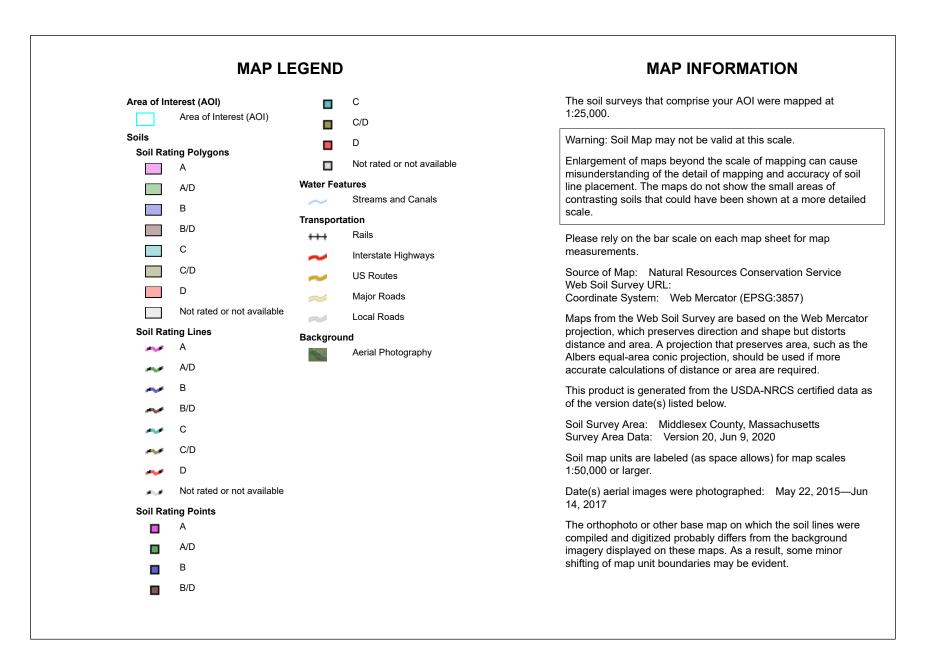
The project is highly complex and information is included in the Stormwater Report that explains why
it is not possible to submit the Construction Period Pollution Prevention and Erosion and
Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and
Erosion and Sedimentation Control has <i>not</i> been included in the Stormwater Report but will be
submitted <i>before</i> land disturbance begins.

- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan


The Post Construction Operation and Maintenance Plan is included in the Stormwater Report	t and
includes the following information:	

- Name of the stormwater management system owners;
- Party responsible for operation and maintenance;
- Schedule for implementation of routine and non-routine maintenance tasks;
- Plan showing the location of all stormwater BMPs maintenance access areas;
- Description and delineation of public safety features;
- Estimated operation and maintenance budget; and
- Operation and Maintenance Log Form.
- The responsible party is **not** the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.


Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.

Appendix C - Soils Data

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

USDA Natural Resources Conservation Service

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
6A	Scarboro mucky fine sandy loam, 0 to 3 percent slopes	A/D	7.7	4.7%
32B	Wareham loamy fine sand, 0 to 5 percent slopes	A/D	17.1	10.4%
73B	Whitman fine sandy loam, 0 to 3 percent slopes, extremely stony	D	2.6	1.6%
223B	Scio very fine sandy loam, 3 to 8 percent slopes	B/D	2.8	1.7%
253A	Hinckley loamy sand, 0 to 3 percent slopes	A	15.1	9.2%
253B	Hinckley loamy sand, 3 to 8 percent slopes	A	1.8	1.1%
255A	Windsor loamy sand, 0 to 3 percent slopes	A	1.8	1.1%
256A	Deerfield loamy fine sand, 0 to 3 percent slopes	A	34.5	21.0%
256B	Deerfield loamy fine sand, 3 to 8 percent slopes	A	2.0	1.2%
259A	Carver loamy coarse sand, 0 to 3 percent slopes	A	3.1	1.9%
260B	Sudbury fine sandy loam, 3 to 8 percent slopes	В	2.9	1.8%
300B	Montauk fine sandy loam, 3 to 8 percent slopes	С	12.3	7.5%
325D	Newport channery fine sandy loam, 8 to 25 percent slopes	D	11.5	7.0%
345B	Pittstown silt loam, 3 to 8 percent slopes	D	4.1	2.5%
405B	Charlton fine sandy loam, 3 to 8 percent slopes	В	23.2	14.1%
405C	Charlton fine sandy loam, 8 to 15 percent slopes	В	7.4	4.5%

	1	1		
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
420B	Canton fine sandy loam, 3 to 8 percent slopes	В	6.1	3.7%
626B	Merrimac-Urban land complex, 0 to 8 percent slopes	A	8.4	5.1%
Totals for Area of Intere	st	•	164.2	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

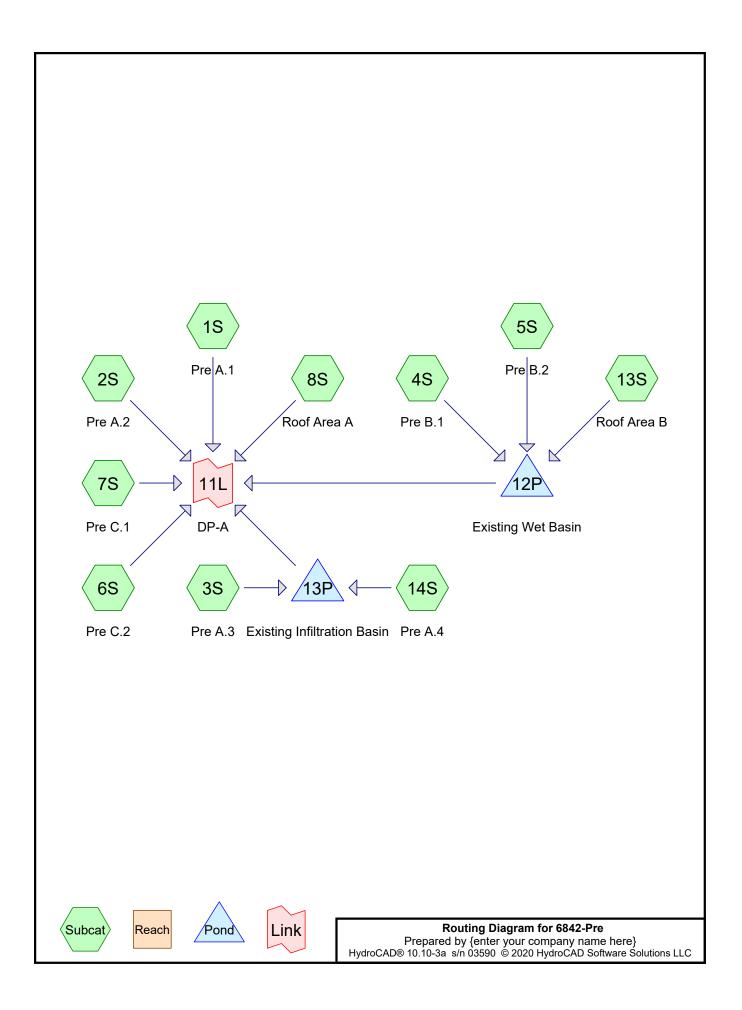
Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

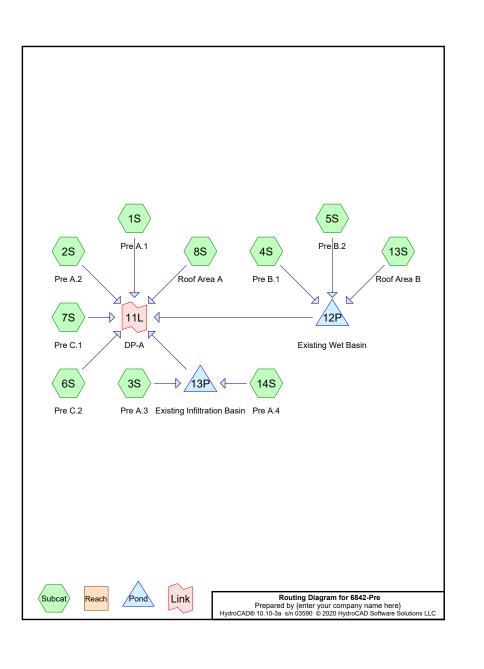
Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher


	City/Town of Bolton Form 11 - Soil Suitability Assessment of On-Site Sewage Disposal	Bolton Soil Suit	ability A	Assessm	ent of Or	n-Site S	ewage [Disposa	-		
Deep O	Deep Observation Hole Number:	Number:	1,2,3	SAME	'M'					///23	11/25/22
Depth	Soil Soil	Soil Matrix: Color-	Redo	Redoximorphic Features (mottles)	eatures	Soil Texture	Coarse Fragments % by Volume		Soil	Soil Consistence	Other
(111-)	י זט ובט וו במצפו	Moist (Munsell)	Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones	Structure	(Moist)	
21	AP	104 th 3/4				SE					
30	En	Sparts gis what	state	30"	+ 5°	57					
400	0	2.546/4				Mad					
			X/660/	XLEEPING STADDING	SUDING	WATER O	. 996.	*			
										5	
Addition	Additional Notes:)								u.
		2									


DEP Form 11 Soil Suitability Assessment for On-Site Sewage Disposal-Page 5 of 7

City/Town of Bolton **Commonwealth of Massachusetts** DEP Form 11 Soil Suitability Assessment for On-Site Sewage Disposal-Page 5 of 7

		-		,		26	44	48°]
						Se	66	36		Depth (In.)	De
		ddition				5	56	00		7	eep C
		Additional Notes:				0	01 01	re/ mut		Soil Horizon/Laver	Deep Observation Hole Number:
6 600	3	3				2546/4	10-110 5/6	t/sal-ol	Moist (Munsell)	Soil Matrix: Color-	Number:
201 dagin	webp 9	weep 24					66"		Depth	Redo	1456
2	96	A			·		8/2 21/2		Color	Redoximorphic Features (mottles)	W.
							150		Percent	eatures	
							·		(USDA)	Soil Texture	
									Gravel	Coarse Fragments % by Volume	*
									Cobbles & Stones		
									ondernie	Soil	1
	i i N								(Moist)	Soil Consistence	
										Other	

Form 11 - Soil Suitability Assessment of On-Site Sewage Disposal City/Town of Bolton **Commonwealth of Massachusetts**

6842-Pre Prepared by {enter your company na HydroCAD® 10.10-3a s/n 03590 © 2020 H	me here}	pe III 24-hr 2-yr Rainfall=3.00" Page 2
Time span=0 Runoff by SCS	.00-72.00 hrs, dt=0.05 hrs, 1441 r TR-20 method, UH=SCS, Weigh +Trans method - Pond routing b	points ted-CN
Subcatchment 1S: Pre A.1		% Impervious Runoff Depth=1.66" CN=86 Runoff=9.16 cfs 0.770 af
Subcatchment 2S: Pre A.2		% Impervious Runoff Depth=0.25" CN=57 Runoff=0.53 cfs 0.136 af
Subcatchment 3S: Pre A.3		% Impervious Runoff Depth=2.77" CN=98 Runoff=1.25 cfs 0.102 af
Subcatchment 4S: Pre B.1		% Impervious Runoff Depth=2.07" CN=91 Runoff=7.52 cfs 0.873 af
Subcatchment 5S: Pre B.2 Flow Ler	Runoff Area=71,871 sf 5.57 igth=416' Tc=12.4 min UI Adjusted	% Impervious Runoff Depth=0.71" I CN=70 Runoff=0.96 cfs 0.098 af
Subcatchment 6S: Pre C.2		% Impervious Runoff Depth=0.91" CN=74 Runoff=1.67 cfs 0.175 af
Subcatchment 7S: Pre C.1		% Impervious Runoff Depth=0.96" CN=75 Runoff=4.68 cfs 0.475 af
Subcatchment 8S: Roof Area A		% Impervious Runoff Depth=2.77" CN=98 Runoff=4.68 cfs 0.380 af
Subcatchment 13S: Roof Area B		% Impervious Runoff Depth=2.77" CN=98 Runoff=1.94 cfs 0.158 af
Subcatchment 14S: Pre A.4		% Impervious Runoff Depth=0.01" CN=43 Runoff=0.00 cfs 0.001 af
Pond 12P: Existing Wet Basin 15.0" Rot	Peak Elev=214.92' Storage= und Culvert n=0.013 L=517.0' S=0.	11,331 cf Inflow=9.06 cfs 1.129 af 0011 '/' Outflow=3.60 cfs 1.129 af
Pond 13P: Existing Infiltration Basin Discarded=0.	Peak Elev=212.92' Storage 22 cfs 0.101 af Primary=0.03 cfs 0	=1,264 cf Inflow=1.25 cfs 0.102 af 0.001 af Outflow=0.25 cfs 0.102 af
Link 11L: DP-A		Inflow=20.88 cfs 3.067 af Primary=20.88 cfs 3.067 af
Total Runoff Area = 30.6	60 ac Runoff Volume = 3.168 a 69.74% Pervious = 21.383 ac	f Average Runoff Depth = 1.24" 30.26% Impervious = 9.277 ac
		-

842-P					- 1	Type III	24-hr 2-yr Rainfall=3.00"
				y name her		Solutions LLC	Page 3
			Sum	mary for S	ubcatch	ment 1S: Pre A.1	
unoff	=	9.16	cfs @ 12	.15 hrs, Vol	ume=	0.770 af, Depth	= 1.66"
	y SCS TF 24-hr 2-y			SCS, Weigł	nted-CN, T	ime Span= 0.00-72.0	00 hrs, dt= 0.05 hrs
A	rea (sf)	CN	Descriptio	on			
	71,903	98		rking, HSG /			
	41,850			rking, HSG I		•	
	45,336 77,493			ass cover, G ass cover, G			
	485			ted paveme			
	5,163	98	Unconne	ted paveme	nt, HSG B		
	42,230	86	Weighted				
	22,829 19,401			ervious Area			
	5,648			connected	ca		
	,						
	Length			y Capacity		tion	
(min) 7.7	(feet) 50	(ft/ft) 0.0100	/`	//	Sheet F	low	
1.1	50	0.0100	0.1	1		Short n= 0.150 P2=	= 2.95"
2.9	223	0.0330) 1.2	7		Concentrated Flov	
		0.000		-		rass Pasture Kv= 7.	
0.2	25	0.008	1 1.8	3		/ Concentrated Flov Kv= 20.3 fps	ν,
10.8	298	Total			Taveu	10-20.0 103	
			Sum	mary for S	ubcatch	ment 2S: Pre A.2	2
unoff	=	0.53 (cfs @ 12	.65 hrs, Vol	ume=	0.136 af, Depth	= 0.25"
	y SCS TF 24-hr 2-y			SCS, Weigl	nted-CN, T	īme Span= 0.00-72.0	00 hrs, dt= 0.05 hrs
A	rea (sf)	CN	Descriptio	n			
	78,930			ood, HSG A			
	49,074			lood, HSG B			
	31,909 16.373			lood, HSG D ass cover, G		۵	
	13,268	79	>75% Gra	ass cover, G	000, 113G	D	

Prepare						Daga 4
						Page 4
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description	
3.8	50	0.0600			Sheet Flow,	
					Grass: Short n= 0.150 P2= 2.95"	
21.0	536	0.0037	0.43		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps	
3.2	72	0.0055	0.37		Shallow Concentrated Flow,	
					Woodland Kv= 5.0 fps	
28.0	658	Total				
			Summ	ary for S	ubcatchment 3S: Pre A.3	
Runoff	=	1.25 c	fs @ 12.0	9 hrs, Volu	ume= 0.102 af, Depth= 2.77"	
	y SCS TF 24-hr 2-y			CS, Weigh	ted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs	
A	rea (sf)	CN I	Description			
	19,199	98	Paved park	ing HSG A		
				ing, 11007	1	
	19,199			npervious A		
То	,		100.00% Im	pervious A	vrea	
	Length	Slope	100.00% Im Velocity	0,		
Tc (min) 6.0	,		100.00% Im Velocity	pervious A Capacity	vrea	
(min)	Length	Slope	Velocity (ft/sec)	Capacity (cfs)	vrea Description	
(min)	Length	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	vrea Description Direct Entry, ubcatchment 4S: Pre B.1	
(min) 6.0 Runoff Runoff b	Length (feet) =	Slope (ft/ft) 7.52 c R-20 met	Velocity (ft/sec) Summ fs @ 12.3 thod, UH=S	Capacity (cfs) ary for St 3 hrs, Volu	vrea Description Direct Entry, ubcatchment 4S: Pre B.1	
(min) 6.0 Runoff Runoff b Type III 2	Length (feet) = y SCS TF	Slope (ft/ft) 7.52 c R-20 met r Rainfal	Velocity (ft/sec) Summ fs @ 12.3 thod, UH=S	Capacity (cfs) ary for Si 3 hrs, Volu	wrea Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 0.873 af, Depth= 2.07"	
(min) 6.0 Runoff Runoff b Type III 2 A	Length (feet) = y SCS TF 24-hr 2-y rea (sf) 59,394	Slope (ft/ft) 7.52 c R-20 met Rainfal <u>CN I</u> 98 I	100.00% In Velocity (ft/sec) Summ fs @ 12.3 thod, UH=S I=3.00" Description Paved park	Capacity (cfs) ary for Si 3 hrs, Volu CS, Weigh	Verea Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 0.873 af, Depth= 2.07" ited-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs	
(min) 6.0 Runoff Runoff b Type III 2 A	Length (feet) = y SCS TF 24-hr 2-y rea (sf) 59,394 49,116	Slope (ft/ft) 7.52 c R-20 met r Rainfal <u>CN I</u> 98 I	100.00% In Velocity (ft/sec) Summ fs @ 12.3 thod, UH=S II=3.00" Description Paved park Paved park	ary for Si 3 hrs, Volu CS, Weigh	Virea Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 0.873 af, Depth= 2.07" ited-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs	
(min) 6.0 Runoff Runoff b Type III 2 A	Length (feet) = y SCS TF 24-hr 2-y rea (sf) 59,394 49,116 36,430	Slope (ft/ft) 7.52 c R-20 met r Rainfal <u>CN I</u> 98 I 98 I 98 J	100.00% In Velocity (ft/sec) Summ fs @ 12.3 thod, UH=S I=3.00" Description Paved park Paved park Paved park	Capacity (cfs) ary for Si 3 hrs, Volu CS, Weigh ing, HSG A ing, HSG B ing, HSG D	vrea Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 0.873 af, Depth= 2.07" uted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs	
(min) 6.0 Runoff Runoff b Type III 2 A	Length (feet) = y SCS TF 24-hr 2-y rea (sf) 59,394 49,116 36,430 36,430	Slope (ft/ft) 7.52 c R-20 met r Rainfal ON 1 98 1 98 1 98 1 98 1 98 3	100.00% In Velocity (ft/sec) Summ fs @ 12.3 thod, UH=S II=3.00" Description Paved park Paved park Paved park Paved park Paved Gras	ary for Si ary for Si 3 hrs, Volu CS, Weigh ing, HSG A ing, HSG B s cover, Gc	vrea Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 0.873 af, Depth= 2.07" uted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
(min) 6.0 Runoff Runoff b Type III 2 A	Length (feet) = y SCS TF 24-hr 2-y rea (sf) 59,394 49,116 36,430 3,947 9,665	Slope (ft/ft) 7.52 c R-20 met r Rainfal 98 I 98 I 98 I 98 I 98 I 98 3 98 1 98 7 97 3	100.00% In Velocity (ft/sec) Summ fs @ 12.3 thod, UH=S I=3.00" Description Paved park Paved park Paved park Paved park Paved park Paved fark >75% Gras	ary for Si ary for Si 3 hrs, Volu CS, Weigh ing, HSG A ing, HSG B ing, HSG B ing, HSG B s cover, Gc	Virea Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 0.873 af, Depth= 2.07" ited-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs obod, HSG A obod, HSG A obd, HSG B	
(min) 6.0 Runoff Runoff b Type III 2 A	Length (feet) = y SCS TF 24-hr 2-y rea (sf) 59,394 49,116 36,430 3,947 9,665 556	Slope (ft/ft) 7.52 c R-20 met r Rainfal 98 l 98 l 98 l 98 l 98 l 98 l 98 l 98	100.00% In Velocity (ft/sec) Summ fs @ 12.3 thod, UH=S II=3.00" Description Paved park Paved park	ary for Si ary for Si 3 hrs, Volu CS, Weigh ing, HSG A ing, HSG B ing, HSG D s cover, Gc s cover, Gc	Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 0.873 af, Depth= 2.07" tted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs bood, HSG A bood, HSG A bood, HSG B bood, HSG D	
(min) 6.0 Runoff Runoff b Type III 2 A	Length (feet) = y SCS TF 24-hr 2-y rea (sf) 59,394 49,116 36,430 3,947 9,665	Slope (ft/ft) 7.52 c R-20 met r Rainfal CN I 98 I 98 I 98 I 98 I 98 S 98 S	100.00% In Velocity (ft/sec) Summ fs @ 12.3 thod, UH=S II=3.00" Description Paved park Paved park Paved park Paved park >75% Gras >75% Gras >75% Gras	ary for Si ary for Si 3 hrs, Volu CS, Weigh ing, HSG A ing, HSG B ing, HSG B s cover, Gc s cover, Gc s cover, Gc	Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 0.873 af, Depth= 2.07" tted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs bod, HSG A bod, HSG B bod, HSG B bod, HSG B	
(min) 6.0 Runoff Runoff b Type III 2 A	Length (feet) = y SCS TF 24-hr 2-y rea (sf) 59,394 49,116 36,430 3,947 9,665 556 1,032	Slope (ft/ft) 7.52 c R-20 met r Rainfal 98 l 98 l 98 l 98 l 98 l 98 s 98 s 98 s 98 s 79 s 98 s	100.00% In Velocity (ft/sec) Summ fs @ 12.3 thod, UH=S II=3.00" Description Paved park Paved park Paved park Paved park >75% Gras >75% Gras >75% Gras	ary for Si ary for Si 3 hrs, Volu GCS, Weigh ing, HSG B ing, HSG B is, cover, Gc s cover, Gc s cover, Gc d pavemen od, HSG D	Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 0.873 af, Depth= 2.07" tted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs bod, HSG A bod, HSG B bod, HSG B bod, HSG B	
(min) 6.0 Runoff Runoff b Type III 2 A	Length (feet) = y SCS TF 24-hr 2-y rea (sf) 59,394 49,116 36,430 3,947 9,665 5566 1,032 60,160	Slope (ft/ft) 7.52 c R-20 met r Rainfal 98 1 98 1 98 1 98 2 98 1 98 2 98 1 98 2 98 1 98 2 98 1 98 2 98 1 98 2 98 2 98 2 99 1 77 2	100.00% In Velocity (ft/sec) Summ fs @ 12.3 thod, UH=S I=3.00" Description Paved park Paved park Paved park Paved park Paved park Paved park Paved park S75% Gras >75% Gras	ary for Si ary for Si 3 hrs, Volu GCS, Weigh ing, HSG B ing, HSG B is, cover, Gc s cover, Gc s cover, Gc d pavemen od, HSG D	Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 0.873 af, Depth= 2.07" tted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs bood, HSG A bood, HSG A bood, HSG B bood, HSG B bood, HSG B bood, HSG B	
(min) 6.0 Runoff Runoff b Type III 2 A * * *	Length (feet) = y SCS TF 24-hr 2-y rea (sf) 59,394 49,116 36,430 3,947 9,665 556 1,032 0,665 556 1,032 20,300	Slope (ft/ft) 7.52 c R-20 met r Rainfal 98 l 98 l 98 l 98 l 98 l 98 l 98 l 98	100.00% In Velocity (ft/sec) Summ fs @ 12.3 thod, UH=S I=3.00" Description Paved park Paved park Paved park Paved park Paved park Paved park Paved park Paved park Paved cars Description Gras >75% Gras >75% Gras >75% Gras	ary for Si ary for Si ary for Si 3 hrs, Volu CS, Weigh ing, HSG A ing, HSG B ing, HSG B ing, HSG D s cover, Gc s cover, Gc ed pavemer od, HSG D verage vious Area pervious Area	virea Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 0.873 af, Depth= 2.07" ited-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs ood, HSG A ood, HSG B	

				name here 0 HydroCAD	Software Solutions LLC Page 5
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
19.0	50	0.0300	0.04		Sheet Flow, Woods: Dense underbrush n= 0.800 P2= 2.95"
3.0	100	0.0500	0.56		Shallow Concentrated Flow, Forest w/Heavy Litter Kv= 2.5 fps
2.4	586	0.0410	4.11		Shallow Concentrated Flow, Paved Kv= 20.3 fps
24.4	736	Total			
			Summ	ary for Su	ubcatchment 5S: Pre B.2
Inoff	=	0.96 cfs	s@ 12.2	0 hrs, Volu	me= 0.098 af, Depth= 0.71"
	16,037 15,072 2,551 1,451 32,793 3,967 71,871 67,869 4,002 4,002		>75% Uncc Uncc Woo 70 Weig 94.4 5.57' 100.1	% Grass co ponnected pa ds, Good, H ds, Go	ISG D ge, UI Adjusted s Area us Area nected
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.5	50	0.0780	0.11		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.95"
0.1	10	0.1000	1.58		Shallow Concentrated Flow, Woodland Ky= 5.0 fps
0.2	39	0.3230	2.84		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
2.8	165	0.0380	0.97		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
0.2	10	0.0200	0.71		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
0.8	55	0.0520	1.14		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
0.8	87	0.1430	1.89		Shallow Concentrated Flow, Woodland Kv= 5.0 fps

12.4	416	l otal

yr Rainfall=3.00" Page 6	Type III 24-hr 2-yr 2} Software Solutions LLC	company r 590 © 2020		d by {ent	
	ubcatchment 6S: Pre C.2	Summa			
	me= 0.175 af, Depth= 0.91"	@ 12.25	1.67 cfs	=	Runoff
0.05 hrs	ted-CN, Time Span= 0.00-72.00 hrs, dt= 0		R-20 meth r Rainfall=		
		escription	CN D	ea (sf)	Ar
		oods, Goo		26,537	
	od, HSG B	loods, Goo		2,127 62,399	*
	od, HSG D			9,762	*
	·	eighted Av	74 W	00,825 00,825	
	Description	Velocity (ft/sec)	Slope (ft/ft)	Length (feet)	Tc (min)
	Sheet Flow,	0.03	0.0160	18	10.8
P2= 2.95"	Woods: Dense underbrush n= 0.800 F	0.22	0.0730	22	25
	Sheet Flow, Grass: Short n= 0.150 P2= 2.95"	0.22	0.0730	33	2.5
	Shallow Concentrated Flow,	2.66	0.1440	121	0.8
	Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow,	2.12	0.1790	10	0.1
	Woodland Kv= 5.0 fps				
	Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps	2.48	0.1260	41	0.3
	Shallow Concentrated Flow,	1.41	0.0800	125	1.5
	Woodland Kv= 5.0 fps	0.04	0.0170	0	0.4
	Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps	0.91	0.0170	6	0.1
	Shallow Concentrated Flow,	2.94	0.0210	5	0.0
	Paved Kv= 20.3 fps Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps	0.96	0.0190	5	0.1
			Total	364	16.2

Summary for Subcatchment 7S: Pre C.1

Runoff = 4.68 cfs @ 12.23 hrs, Volume=

lume= 0.475 af, Depth= 0.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-yr Rainfall=3.00"

			company 3590 © 2020		Software Solutions LLC	Page
A	rea (sf)	CN	Description			
*	78,314		>75% Grass			
* ^	47,609 2,514		>75% Grass Roofs, HSG		od, HSG B	
	11,441		Paved parki			
	18,629		Woods, Goo			
	258,507		Weighted A			
2	244,552 13,955		94.60% Per 5.40% Impe			
Tc (min)	Length (feet)	Slope (ft/ft)	e Velocity) (ft/sec)	Capacity (cfs)	Description	
1.9	10	0.1000	0.09		Sheet Flow,	_
2.7	40	0.0900	0.25		Woods: Light underbrush n= 0.400 P2= 2.95' Sheet Flow.	
2.1	40	0.0300	0.25		Grass: Short n= 0.150 P2= 2.95"	
1.1	120	0.0700	1.85		Shallow Concentrated Flow,	
0.5	36	0.0650) 1.27		Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow,	
0.5	50	0.0000	1.21		Woodland Kv= 5.0 fps	
1.6	175	0.0650	1.78		Shallow Concentrated Flow,	
0.0	-	0.0100	2.00		Short Grass Pasture Kv= 7.0 fps	
0.0	5	0.0190	2.80		Shallow Concentrated Flow, Paved Kv= 20.3 fps	
7.4	368	0.0140	0.83		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps	
15.2	754	Total				
			Summary	for Subc	atchment 8S: Roof Area A	
Runoff	=	4.68 c	fs @ 12.09	9 hrs, Volu	me= 0.380 af, Depth= 2.77"	
	y SCS TF 24-hr 2-y			CS, Weight	ed-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs	;
A	rea (sf)	CN	Description			
	71,756	98	Roofs, HSG	в		
	71,756		100.00% Im	pervious A	ea	
Tc (min)	Length (feet)	Slope (ft/ft)	e Velocity) (ft/sec)	Capacity (cfs)	Description	
6.0					Direct Entry,	
		:	Summary	for Subc	atchment 13S: Roof Area B	
Runoff	=	1.94 c	fs @ 12.09	9 hrs, Volu	me= 0.158 af, Depth= 2.77"	
			thad UU-S	CS Weight	ed-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs	

	{enter your co .10-3a_s/n 0359		ie here} droCAD Software So	lutions LLC	Page 8
Area (s	f) CN Des	scription			
29,81		ofs, HSG B			
29,81	4 100	0.00% Imperv	vious Area		
Tc Leng (min) (fe		/elocity Caj (ft/sec)	pacity Descriptior (cfs)	1	
6.0			Direct Ent	ry,	
	ę	Summary f	or Subcatchme	ent 14S: Pre A.4	L
lunoff =	0.00 cfs (@ 22.18 hrs	, Volume=	0.001 af, Depth=	0.01"
	S TR-20 metho 2-yr Rainfall=3		Weighted-CN, Tim	e Span= 0.00-72.0	0 hrs, dt= 0.05 hrs
Area (s 10.96	/	scription	/er, Good, HSG A		
20,43		ods, Good, F			
31,39 31,39		ighted Avera 0.00% Pervio			
Tc Lend		/elocity Ca			
(min) (fe 6.0		(ft/sec)	(cfs) Direct Ent		
	S	ummary fo		isting Wet Basi	'n
		•		•	
nflow Area =		,55.84% Im @ 12.31 hrs	pervious, Inflow D	epth = 1.83" for 1.129 af	2-yr event
outflow =	3.60 cfs (0 12.77 hrs	, Volume=	1.129 af, Atten=	60%, Lag= 27.7 min
initial y		0 12.77 hrs	,	1.129 af	
			0.00-72.00 hrs, dt= ea= 13,149 sf Sto		
	ention time= 22 s det. time= 22		lated for 1.128 af (.2 - 818.6)	100% of inflow)	
olume	Invert Ava	il.Storage	Storage Description	ו	
#1 2	12.30'	64,778 cf	Custom Stage Dat	a (Irregular)Listed	below (Recalc)
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet) 212.30	(sq-ft) 50	(feet) 75.0	(cubic-feet) 0	(cubic-feet) 0	<u>(sq-ft)</u> 50
212.30	556	100.0	180	180	403
214.00	5,786	393.0	2,712	2,892	11,901
215.00 216.00	13,981 19.970	580.0 757.0	9,587 16,887	12,479 29,366	26,388 45.232
217.00	53,560	1,442.0	35,412	64,778	165,106

6842-Pre	Type III 24-hr 2-yr Rainfall=3.00"
Prepared by {enter your company name here}	
HvdroCAD® 10.10-3a s/n 03590 © 2020 HvdroCAD Software Solu	utions LLC Page 9

Device Routing Invert Outlet Devices 212.37' 15.0" Round Culvert #1 Primary L= 517.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 212.37' / 211.80' S= 0.0011 '/' Cc= 0.900 n= 0.013 Concrete pipe, straight & clean, Flow Area= 1.23 sf

Primary OutFlow Max=3.60 cfs @ 12.77 hrs HW=214.91' (Free Discharge) 1=Culvert (Barrel Controls 3.60 cfs @ 2.93 fps)

Summary for Pond 13P: Existing Infiltration Basin

Inflow Area =	1.161 ac, 37.95% Impervious, Inflow De	epth = 1.06" for 2-yr event
Inflow =	1.25 cfs @ 12.09 hrs, Volume=	0.102 af
Outflow =	0.25 cfs @ 12.52 hrs, Volume=	0.102 af, Atten= 80%, Lag= 25.9 min
Discarded =	0.22 cfs @ 12.52 hrs, Volume=	0.101 af
Primary =	0.03 cfs @ 12.52 hrs, Volume=	0.001 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 212.92' @ 12.52 hrs Surf.Area= 3,299 sf Storage= 1,264 cf

Plug-Flow detention time= 38.4 min calculated for 0.102 af (100% of inflow) Center-of-Mass det. time= 38.4 min (798.7 - 760.3)

-

. . . .

Volume	Invert	Avail.	Storage	Storage Description	n	
#1	212.50'	1	1,128 cf	Custom Stage Da	ta (Irregular)Listed	below (Recalc)
Elevation (feet)	Sur	f.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>
212.50		2,793	372.0	0	0	2,793
213.00 214.00		3,407 4,790	450.0 473.0	1,547 4.079	1,547 5.626	7,899 9.651
215.00		6,246	497.0	5,502	11,128	11,566
Device R	outing	Inv	ert Outle	et Devices		

_ ...

001100	rtouting	Internet	Callot Deviced
#1	Primary	212.83'	15.0" Round Culvert
			L= 90.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 212.83' / 210.39' S= 0.0271 '/' Cc= 0.900
			n= 0.013, Flow Area= 1.23 sf
#2	Discarded	212.50'	2.410 in/hr Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 210.40'
#3	Device 1	212.63'	3.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
	Donico i	212.00	

Discarded OutFlow Max=0.22 cfs @ 12.52 hrs HW=212.92' (Free Discharge) **2=Exfiltration** (Controls 0.22 cfs)

Primary OutFlow Max=0.03 cfs @ 12.52 hrs HW=212.92' (Free Discharge) 1=Culvert (Inlet Controls 0.03 cfs @ 0.78 fps) -3=Orifice/Grate (Passes 0.03 cfs of 0.07 cfs potential flow)

6842-Pre	Type III 24-hr 2-yr Rainfall=3.00"	
Prepared by {enter your company name here}		
HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Soluti	ions LLC Page 10	

Summary for Link 11L: DP-A

Inflow Area =	30.660 ac, 30.26% Impervious, In	flow Depth = 1.20" for 2-yr event
Inflow =	20.88 cfs @ 12.16 hrs, Volume=	3.067 af
Primary =	20.88 cfs @ 12.16 hrs, Volume=	3.067 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Prepared by {enter your company n HydroCAD® 10.10-3a s/n 03590 © 2020		Page 11
Runoff by SC	0.00-72.00 hrs, dt=0.05 hrs, 1441 points S TR-20 method, UH=SCS, Weighted-CN nd+Trans method - Pond routing by Stor-Ind meth	od
Subcatchment 1S: Pre A.1	Runoff Area=242,230 sf 49.29% Impervious F Flow Length=298' Tc=10.8 min CN=86 Runoff=	
Subcatchment 2S: Pre A.2	Runoff Area=289,668 sf 0.00% Impervious F Flow Length=658' Tc=28.0 min CN=57 Runof	
Subcatchment 3S: Pre A.3	Runoff Area=19,199 sf 100.00% Impervious F Tc=6.0 min CN=98 Runof	
Subcatchment 4S: Pre B.1	Runoff Area=220,300 sf 66.26% Impervious F Flow Length=736' Tc=24.4 min CN=91 Runoff=	
Subcatchment 5S: Pre B.2 Flow L	Runoff Area=71,871 sf 5.57% Impervious F ength=416' Tc=12.4 min UI Adjusted CN=70 Runofi	
Subcatchment 6S: Pre C.2	Runoff Area=100,825 sf 0.00% Impervious F Flow Length=364' Tc=16.2 min CN=74 Runof	
Subcatchment 7S: Pre C.1	Runoff Area=258,507 sf 5.40% Impervious F Flow Length=754' Tc=15.2 min CN=75 Runoff=	
Subcatchment 8S: Roof Area A	Runoff Area=71,756 sf 100.00% Impervious F Tc=6.0 min CN=98 Runof	
Subcatchment 13S: Roof Area B	Runoff Area=29,814 sf 100.00% Impervious F Tc=6.0 min CN=98 Runof	
Subcatchment 14S: Pre A.4	Runoff Area=31,394 sf 0.00% Impervious F Tc=6.0 min CN=43 Runof	
Pond 12P: Existing Wet Basin 15.0" F	Peak Elev=215.76' Storage=24,747 cf Inflow= ound Culvert n=0.013 L=517.0' S=0.0011 '/' Outflow	
Pond 13P: Existing Infiltration Basin Discarded=	Peak Elev=213.14' Storage=2,039 cf Inflow 0.25 cfs 0.151 af Primary=0.13 cfs 0.016 af Outflow	
Link 11L: DP-A		38.37 cfs 5.690 af

1011 Area - 30.000 ac Runon Volume - 5.041 a	Average Runon Depth – 2.29
69.74% Pervious = 21.383 ac	30.26% Impervious = 9.277 ac

6842-P							Туре	III 24-hr 10-yr F	ainfall=4.4		
					name her 0 HydroCAI		Solutions LLC		Page		
			•		f O						
	Summary for Subcatchment 1S: Pre A.1										
Runoff	=	16.13	cfs @	12.1	5 hrs, Volu	ume=	1.366 af, De	pth= 2.95"			
					CS, Weigł	nted-CN, T	ime Span= 0.00-	72.00 hrs, dt= 0.0	5 hrs		
Type III 2	24-hr 10-	-yr Rain	ıfall=4.	44"							
A	rea (sf)	CN	Desci	ription							
*	71,903	98			ing, HSG A						
	41,850	98			ing, HSG E						
*	45,336	68				ood, HSG					
*	77,493	79				ood, HSG					
	485	98				nt, HSG A					
	5,163	98				nt, HSG B					
	42,230 22,829	86			verage vious Area						
	22,829				vious Area						
1	5,648				onnected	ea					
	0,040		4.707	0 Onoc	micolou						
Тс	Length	Slop	e Ve	locitv	Capacity	Descript	ion				
(min)	(feet)	(ft/f		/sec)	(cfs)						
7.7	50	0.010	0	0.11		Sheet F	low,				
						Grass: S	hort n= 0.150	P2= 2.95"			
2.9	223	0.033	0	1.27			Concentrated F				
							ass Pasture Kv				
0.2	25	0.008	1	1.83			Concentrated F	low,			
40.0	000	T-4-1				Paved	Kv= 20.3 fps				
10.8	298	Total									
			S	umma	ary for S	ubcatch	ment 2S: Pre	A.2			
Runoff	=	2.93	cfs @	12.49	9 hrs, Voli	ume=	0.455 af, De	pth= 0.82"			
Б <i>«</i> .					00 M/ · ·						
Runoff b Type III 2					CS, Weigh	nted-CN, T	ime Span= 0.00-	72.00 hrs, dt= 0.0	5 hrs		
		,									
A	rea (sf)	CN		ription							
	78,930	30			od, HSG A						
	49,074 31.909	55 77			od, HSG B od. HSG D						
* 1	16,373	68				ood, HSG	Δ				
*	13,268	79				ood, HSG					
		10									
*	114	89	>75%	Grass	s cover, G	ood, HSG	D				

6842-P					Type III 24-hr 10-yr Rainfall=4.44"
				name here	e} D Software Solutions LLC Page 13
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
3.8	50	0.0600	0.22	(013)	Sheet Flow.
					Grass: Short n= 0.150 P2= 2.95"
21.0	536	0.0037	0.43		Shallow Concentrated Flow,
3.2	72	0.0055	0.37		Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
28.0	658	Total			
			Summ	on for S	ubastahmant 25, Dra A 2
			Summ	ary ior Si	ubcatchment 3S: Pre A.3
Runoff	=	1.87 cf	s @ 12.0	9 hrs, Volu	ume= 0.154 af, Depth= 4.20"
			<u> </u>		
				CS, Weigh	ted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
i ype III 2	24-hr 10-	yr Rainfa	11=4.44"		
А	rea (sf)	CN E	Description		
	19,199	98 F	aved park	ina. HSG A	
	19,199	1	00.00% In	pervious A	
Та	,			pervious A	\rea
	Length	Slope	Velocity	pervious A Capacity	\rea
Tc (min) 6.0	,			pervious A	\rea
(min)	Length	Slope	Velocity (ft/sec)	pervious A Capacity (cfs)	Area Description Direct Entry,
(min)	Length	Slope	Velocity (ft/sec)	pervious A Capacity (cfs)	Area Description
<u>(min)</u> 6.0	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity Capacity (cfs)	Description Direct Entry, ubcatchment 4S: Pre B.1
<u>(min)</u> 6.0	Length	Slope (ft/ft)	Velocity (ft/sec)	pervious A Capacity (cfs)	Description Direct Entry, ubcatchment 4S: Pre B.1
(min) 6.0 Runoff Runoff b	Length (feet) = y SCS TF	Slope (ft/ft) 12.26 cf: R-20 meth	Velocity (ft/sec) Summ s @ 12.3 hod, UH=S	Capacity (cfs) ary for Si 3 hrs, Volu	Description Direct Entry, ubcatchment 4S: Pre B.1
(min) 6.0 Runoff Runoff b	Length (feet)	Slope (ft/ft) 12.26 cf: R-20 meth	Velocity (ft/sec) Summ s @ 12.3 hod, UH=S	Capacity (cfs) ary for Si 3 hrs, Volu	Area Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 1.450 af, Depth= 3.44"
(min) 6.0 Runoff Runoff b Type III :	Length (feet) = y SCS TF 24-hr 10-	Slope (ft/ft) 12.26 cf: R-20 meth yr Rainfa	Velocity (ft/sec) Summ s @ 12.3 nod, UH=S ull=4.44"	Capacity (cfs) ary for Si 3 hrs, Volu CS, Weigh	Area Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 1.450 af, Depth= 3.44"
(min) 6.0 Runoff Runoff b Type III :	Length (feet) = y SCS TF 24-hr 10- rea (sf)	Slope (ft/ft) 12.26 cf: R-20 mett -yr Rainfa <u>CN E</u>	Velocity (ft/sec) Summ s @ 12.3 hod, UH=S ll=4.44" Description	Capacity (cfs) ary for Si 3 hrs, Volu CS, Weigh	Verea Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 1.450 af, Depth= 3.44" ited-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
(min) 6.0 Runoff Runoff b Type III :	Length (feet) = y SCS TF 24-hr 10-	Slope (ft/ft) 12.26 cfr R-20 meth yr Rainfa <u>CN E</u> 98 F	Velocity (ft/sec) Summ s @ 12.3 hod, UH=S ull=4.44" Description Paved park	Capacity (cfs) ary for Si 3 hrs, Volu CCS, Weigh	Avrea Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 1.450 af, Depth= 3.44" tted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
(min) 6.0 Runoff Runoff b Type III :	Length (feet) = y SCS TF 24-hr 10- rea (sf) 59,394	Slope (ft/ft) 12.26 cf R-20 mett yr Rainfa <u>CN E</u> 98 F 98 F	Velocity (ft/sec) Summ s @ 12.3 hod, UH=S hll=4.44" Description Paved park aved park	Capacity (cfs) ary for Si 3 hrs, Volu CS, Weigh	Area Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 1.450 af, Depth= 3.44" uted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
(min) 6.0 Runoff Runoff b Type III :	Length (feet) = y SCS TF 24-hr 10- rea (sf) 59,394 49,116	Slope (ft/ft) 12.26 cf: R-20 mett yr Rainfa <u>CN E</u> 98 F 98 F 98 F 98 F 98 F 98 F	Velocity (ft/sec) Summ s @ 12.3 hod, UH=S lill=4.44" Description Paved park 'aved park 'aved park 'aved park 'aved park	ary for Si ary for Si 3 hrs, Volu CS, Weigh ing, HSG A ing, HSG E s cover, Gc	Virea Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 1.450 af, Depth= 3.44" ited-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs 0 0 0 0 0 0 0
(min) 6.0 Runoff Runoff b Type III :	Length (feet) = y SCS TF 24-hr 10- rea (sf) 59,394 49,116 36,430 3,947 9,665	Slope (ft/ft) 12.26 cf 3-20 mett yr Rainfa 08 F 98 F 98 F 98 F 68 > 79 >	Velocity (ft/sec) Summ s @ 12.3 hod, UH=S lil=4.44" Description Paved park Paved park Paved park Paved park Paved park Paved park Paved park Paved park	ary for Si ary for Si 3 hrs, Volu CS, Weigh ing, HSG A ing, HSG B ing, HSG B ing, HSG C s cover, Gc	Area Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 1.450 af, Depth= 3.44" ited-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Abood, HSG A bood, HSG A bodd, HSG B
(min) 6.0 Runoff Runoff b Type III :	Length (feet) = y SCS TF 24-hr 10- 59,394 49,116 36,430 3,947 9,665 556	Slope (ft/ft) 12.26 cf 2-20 mett yr Rainfa 98 F 98 F 98 F 98 F 98 F 98 F 98 F 98 F	Velocity (ft/sec) Summ s @ 12.3 hod, UH=S III=4.44" Description Paved park Paved park Pa	ary for Si ary for Si 3 hrs, Volu CS, Weigh ing, HSG A ing, HSG E ing, HSG E s cover, Gc s cover, Gc	Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 1.450 af, Depth= 3.44" uted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs bood, HSG A bood, HSG B bood, HSG D
(min) 6.0 Runoff Runoff b Type III :	Length (feet) = y SCS TF 24-hr 10- 759,394 49,116 36,430 3,947 9,665 556 1,032	Slope (ft/ft) 12.26 cf 3-20 meti yr Rainfa 98 F 98 F 98 F 98 F 68 > 79 > 89 > 89 >	Velocity (ft/sec) Summ s @ 12.3 nod, UH=S ull=4.44" Description Paved park Paved park Paved park 75% Gras 75% Gras 75% Gras	ary for Si ary for Si ary for Si 3 hrs, Volu CS, Weigh ing, HSG A ing, HSG B ing, HSG B ing, HSG B s cover, Gc s cover, Gc s cover, Gc	Virea Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 1.450 af, Depth= 3.44" ited-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs bod, HSG A bod, HSG A bod, HSG D nt, HSG B
(min) 6.0 Runoff b Type III : A	Length (feet) = y SCS TF 24-hr 10- rea (sf) 59,394 49,116 36,430 3,947 9,665 5566 1,032 60,160	Slope (ft/ft) 12.26 cf: 	Velocity (ft/sec) Summ s @ 12.3 hod, UH=S lil=4.44" Description Paved park '75% Gras '75% Gras '75% Gras '75% Gras '75% Gras	ary for Si ary for Si ary for Si 3 hrs, Volu CS, Weigh ing, HSG B ing, HSG B s cover, Gc s cover, Gc s cover, Gc s cover, Gc	Virea Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 1.450 af, Depth= 3.44" ited-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs bod, HSG A bod, HSG A bod, HSG D nt, HSG B
(min) 6.0 Runoff b Type III : A	Length (feet) = y SCS TF 24-hr 10- rea (sf) 59,394 49,116 36,430 3,947 9,665 556 1,032 0,605 1,032 20,300	Slope (ft/ft) 12.26 cf R-20 meth yr Rainfa 08 F 98 F 98 F 98 F 98 F 68 > 79 > 89 S 89 S 98 L 77 V 91 V	Velocity (ft/sec) Summ s @ 12.3 nod, UH=S III=4.44" Description Paved park Paved park Pa	ary for Si ary for Si 3 hrs, Volu CS, Weigh ing, HSG A ing, HSG B ing, HSG B ing, HSG B is cover, Go s cover, Go	Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 1.450 af, Depth= 3.44" uted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
(min) 6.0 Runoff b Type III 1 A * * *	Length (feet) = y SCS TF 24-hr 10- 759,394 49,116 36,430 3,947 9,665 556 1,032 60,160 74,328	Slope (ft/ft) 12.26 cf 2-20 mett yr Rainfa 08 F 98 F 98 F 98 F 98 F 98 F 98 F 98 S 98 V 79 > 98 U 79 V 98 V 91 V	Velocity (ft/sec) Summ s @ 12.3 hod, UH=S ill=4.44" Description Paved park Paved park Pa	ary for Si ary for Si	Area Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 1.450 af, Depth= 3.44" tted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs bod, HSG A bod, HSG A bod, HSG B bod, HSG B bod, HSG B bod, HSG B
(min) 6.0 Runoff Runoff b Type III 2 A	Length (feet) = y SCS TF 24-hr 10- 759,394 49,116 36,430 3,947 9,665 556 1,032 60,160 20,300 74,328 45,972	Slope (ft/ft) 12.26 cf: 3-20 meti yr Rainfa 98 F 98 F 98 F 98 F 98 F 98 F 98 F 98 F	Velocity (ft/sec) Summ s @ 12.3 nod, UH=S ull=4.44" Description Paved park Paved park Paved park Paved park Paved park 75% Gras 75% Gras	ary for Si ary for Si	Area Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 1.450 af, Depth= 3.44" tted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs bod, HSG A bod, HSG A bod, HSG B bod, HSG B bod, HSG B bod, HSG B
(min) 6.0 Runoff b Fype III : A	Length (feet) = y SCS TF 24-hr 10- 759,394 49,116 36,430 3,947 9,665 556 1,032 60,160 74,328	Slope (ft/ft) 12.26 cf: 3-20 meti yr Rainfa 98 F 98 F 98 F 98 F 98 F 98 F 98 F 98 F	Velocity (ft/sec) Summ s @ 12.3 hod, UH=S ill=4.44" Description Paved park Paved park Pa	ary for Si ary for Si	Area Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 1.450 af, Depth= 3.44" tted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs bod, HSG A bod, HSG A bod, HSG B bod, HSG B bod, HSG B bod, HSG B

		tor vour i	romnany	name here	
					5) Software Solutions LLC Page 14
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
19.0	50	0.0300	0.04		Sheet Flow, Woods: Dense underbrush n= 0.800 P2= 2.95"
3.0	100	0.0500	0.56		Shallow Concentrated Flow, Forest w/Heavy Litter Kv= 2.5 fps
2.4	586	0.0410	4.11		Shallow Concentrated Flow, Paved Kv= 20.3 fps
24.4	736	Total			
			Summ	ary for Su	ubcatchment 5S: Pre B.2
Runoff	=	2.44 cfs	s@ 12.1	8 hrs, Volu	ıme= 0.224 af, Depth= 1.63"
. "	000 T				
	y SCS TF 24-hr 10-			CS, Weigh	ted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
ype m.	24-111 10-	уг каппа	11-4.44		
A	rea (sf)	CN A	Adj Desc	ription	
	16,037	79	>75%	6 Grass co	ver, Good, HSG B
	15,072	89			ver, Good, HSG D
	2,551	98			avement, HSG B
	1,451	98			avement, HSG D
	32,793	55	VVOO	ds, Good, H	
	2 067	77			
	3,967	77	Woo	ds, Good, H	HSG D
	71,871		Woo 70 Weig	<u>ds, Good, H</u> hted Avera	HSG D age, UI Adjusted
	71,871 67,869		Woo 70 Weig 94.4	ds, Good, H Ihted Avera 3% Perviou	HSG D age, UI Adjusted is Area
	71,871 67,869 4,002		Woo 70 Weig 94.4 5.57	<u>ds, Good, H</u> hted Avera	HSG D age, UI Adjusted is Area us Area
	71,871 67,869 4,002 4,002	71	Woo 70 Weig 94.4 5.57 100.0	ds, Good, H hted Avera 3% Perviou % Impervio 00% Uncon	HSG D age, UI Adjusted Is Area us Area nnected
	71,871 67,869 4,002 4,002 Length	71 Slope	Woo 70 Weig 94.4 5.57 100.1 Velocity	ds, Good, H Jhted Avera 3% Perviou % Impervio 00% Uncon Capacity	HSG D age, UI Adjusted is Area us Area
Tc (min) 7.5	71,871 67,869 4,002 4,002	71	Woo 70 Weig 94.4 5.57 100.0	ds, Good, H hted Avera 3% Perviou % Impervio 00% Uncon	HSG D age, UI Adjusted Is Area us Area nnected
(min) 7.5	71,871 67,869 4,002 4,002 Length (feet) 50	71 Slope (ft/ft) 0.0780	Woo 70 Weig 94.4. 5.57' 100.1 Velocity (ft/sec) 0.11	ds, Good, H Jhted Avera 3% Perviou % Impervio 00% Uncon Capacity	HSG D age, UI Adjusted Is Area us Area unected Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.95"
(min) 7.5 0.1	71,871 67,869 4,002 4,002 Length (feet) 50 10	71 Slope (ft/ft) 0.0780 0.1000	Woo 70 Weig 94.4: 5.57' 100.1 Velocity (ft/sec) 0.11 1.58 1.58	ds, Good, H Jhted Avera 3% Perviou % Impervio 00% Uncon Capacity	HSG D age, UI Adjusted is Area us Area innected Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.95" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
(min) 7.5	71,871 67,869 4,002 4,002 Length (feet) 50	71 Slope (ft/ft) 0.0780	Woo 70 Weig 94.4. 5.57' 100.1 Velocity (ft/sec) 0.11	ds, Good, H Jhted Avera 3% Perviou % Impervio 00% Uncon Capacity	HSG D age, UI Adjusted is Area us Area inected Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.95" Shallow Concentrated Flow, Woodland Kv= 5.0 fps Shallow Concentrated Flow,
(min) 7.5 0.1	71,871 67,869 4,002 4,002 Length (feet) 50 10	71 Slope (ft/ft) 0.0780 0.1000	Woo 70 Weig 94.4: 5.57' 100.1 Velocity (ft/sec) 0.11 1.58 1.58	ds, Good, H Jhted Avera 3% Perviou % Impervio 00% Uncon Capacity	HSG D age, UI Adjusted is Area us Area innected Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.95" Shallow Concentrated Flow, Woodland Kv= 5.0 fps Shallow Concentrated Flow, Woodland Kv= 5.0 fps Shallow Concentrated Flow,
(min) 7.5 0.1 0.2	71,871 67,869 4,002 4,002 Length (feet) 50 10 39	71 Slope (ft/ft) 0.0780 0.1000 0.3230	Woo 70 Weig 94.4: 5.57' 100.1 Velocity (ft/sec) 0.11 1.58 2.84	ds, Good, H Jhted Avera 3% Perviou % Impervio 00% Uncon Capacity	HSG D age, UI Adjusted is Area us Area us Area Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.95" Shallow Concentrated Flow, Woodland Kv= 5.0 fps Shallow Concentrated Flow,
(min) 7.5 0.1 0.2 2.8	71,871 67,869 4,002 4,002 Length (feet) 50 10 39 165	71 Slope (ft/ft) 0.0780 0.1000 0.3230 0.0380	Woo 70 Weig 94.4 5.57 100. Velocity (ft/sec) 0.11 1.58 2.84 0.97 0.97	ds, Good, H Jhted Avera 3% Perviou % Impervio 00% Uncon Capacity	HSG D age, UI Adjusted is Area us Area innected Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.95" Shallow Concentrated Flow, Woodland Kv= 5.0 fps Shallow Concentrated Flow, Woodland Kv= 5.0 fps Shallow Concentrated Flow, Woodland Kv= 5.0 fps

12.4 416 Total

				name here 0 HydroCAL	D Software Solutions LLC Page 15				
Summary for Subcatchment 6S: Pre C.2									
Runoff	= 3.75 cfs @ 12.23 hrs, Volume= 0.372 af, Depth= 1.93"								
		R-20 meth ∙yr Rainfa		CS, Weigh	ted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs				
Aı	rea (sf)	CN D	escription						
:	26,537			od, HSG B					
*	2,127			od, HSG D					
	62,399 9,762				ood, HSG B ood, HSG D				
1	00.825		Veighted A	,	500, 1100 D				
	00,825			ervious Are	a				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.8	18	0.0160	0.03	()	Sheet Flow,				
2.5	33	0.0730	0.22		Woods: Dense underbrush n= 0.800 P2= 2.95" Sheet Flow.				
2.0	00	0.0700	0.22		Grass: Short n= 0.150 P2= 2.95"				
0.8	121	0.1440	2.66		Shallow Concentrated Flow,				
			a (-		Short Grass Pasture Kv= 7.0 fps				
0.1	10	0.1790	2.12		Shallow Concentrated Flow,				
0.3	41	0.1260	2.48		Woodland Kv= 5.0 fps Shallow Concentrated Flow,				
0.0	41	0.1200	2.40		Short Grass Pasture Kv= 7.0 fps				
1.5	125	0.0800	1.41		Shallow Concentrated Flow,				
					Woodland Kv= 5.0 fps				
0.1	6	0.0170	0.91		Shallow Concentrated Flow,				
0.0	5	0.0210	2.94		Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow.				
0.0	5	0.0210	2.94		Paved Kv= 20.3 fps				
0.1	5	0.0190	0.96		Shallow Concentrated Flow,				
					Short Grass Pasture Kv= 7.0 fps				
16.2	364	Total							

16.2 364 Total

Summary for Subcatchment 7S: Pre C.1

Runoff = 10.34 cfs @ 12.22 hrs, Volume= 0.991 af, Depth= 2.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=4.44"

			r company 03590 © 202		Software Solutions LLC Page
	Area (sf)	CN	Description		
*	78,314		>75% Gras		
	147,609 2.514		>75% Grass Roofs, HSG		IOO, HSG B
	11,441		Paved parki		
	18,629		Woods, Goo		
	258,507 244,552	75	Weighted A 94.60% Per		
	13,955		5.40% Impe		
T (mir	c Length	Slope (ft/ft		Capacity (cfs)	Description
1.	, , ,		/ (/	(0.0)	Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 2.95"
2.	7 40	0.0900	0 0.25		Sheet Flow, Grass: Short n= 0.150 P2= 2.95"
1.	1 120	0.0700	0 1.85		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
0.	5 36	0.0650	0 1.27		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
1.	6 175	0.0650	0 1.78		Shallow Concentrated Flow,
0	о г	0.0400			Short Grass Pasture Kv= 7.0 fps
0.	0 5	0.0190	0 2.80		Shallow Concentrated Flow, Paved Kv= 20.3 fps
7.	4 368	0.0140	0.83		Shallow Concentrated Flow,
15.	2 754	Total			Short Grass Pasture Kv= 7.0 fps
15.	2 754	Total			
			Summary	for Sub	catchment 8S: Roof Area A
Runof	f =	6.98 0	cfs @ 12.0	9 hrs, Volu	me= 0.577 af, Depth= 4.20"
	by SCS T II 24-hr 10			CS, Weigh	ted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
	Area (sf)	CN	Description		
	71,756		Roofs, HSG		
	71,756		100.00% Im	pervious A	rea
T (mir	c Length) (feet)	Slope (ft/ft	e Velocity :) (ft/sec)	Capacity (cfs)	Description
6.	0				Direct Entry,
			Summary	for Subc	atchment 13S: Roof Area B
Runof		2 00 /	cfs @ 12.0	ahre Volu	me= 0.240 af, Depth= 4.20"

842-Pre Type III 24-hr 10-yr Rainfall=4.44"	6842-Pre Type III 24-hr 10-yr Rainfall=4.4
repared by {enter your company name here} /droCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 17	Prepared by {enter your company name here} HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page
Area (sf) CN Description	Device Routing Invert Outlet Devices
29,814 98 Roofs, HSG B	#1 Primary 212.37' 15.0" Round Culvert
29,814 100.00% Impervious Area	L= 517.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 212.37' / 211.80' S= 0.0011 '/' Cc= 0.900
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	n= 0.013 Concrete pipe, straight & clean, Flow Area= 1.23 sf
6.0 Direct Entry,	Primary OutFlow Max=4.34 cfs @ 12.89 hrs HW=215.76' (Free Discharge) 1-1=Culvert (Barrel Controls 4.34 cfs @ 3.54 fps)
Summary for Subcatchment 14S: Pre A.4	Summary for Pond 13P: Existing Infiltration Basin
unoff = 0.04 cfs @ 12.44 hrs, Volume= 0.013 af, Depth= 0.21"	Inflow Area = 1.161 ac, 37.95% Impervious, Inflow Depth = 1.73" for 10-yr event
unoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs /pe III 24-hr 10-yr Rainfall=4.44"	Inflow = 1.87 cfs @ 12.09 hrs, Volume= 0.167 af Outflow = 0.39 cfs @ 12.53 hrs, Volume= 0.167 af, Atten= 79%, Lag= 26.4 min
	Discarded = 0.25 cfs @ 12.53 hrs, Volume= 0.151 af Primary = 0.13 cfs @ 12.53 hrs, Volume= 0.016 af
Area (sf) CN Description 10.963 68 >75% Grass cover, Good, HSG A	
20,431 30 Woods, Good, HSG A	Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
31,394 43 Weighted Average	Peak Elev= 213.14' @ 12.53 hrs Surf.Area= 3,587 sf Storage= 2,039 cf
31,394 100.00% Pervious Area	Plug-Flow detention time= 47.4 min calculated for 0.167 af (100% of inflow)
Tc Length Slope Velocity Capacity Description	Center-of-Mass det. time= 47.4 min (816.2 - 768.8)
(min) (feet) (ft/ft) (ft/sec) (cfs)	Volume Invert Avail.Storage Storage Description
6.0 Direct Entry,	#1 212.50' 11,128 cf Custom Stage Data (Irregular) Listed below (Recalc)
Summary for Pond 12P: Existing Wet Basin	Elevation Surf.Area Perim. Inc.Store Cum.Store Wet.Area (feet) (sq-ft) (feet) (cubic-feet) (sq-ft) (sq-ft)
flow Area = 7.392 ac, 55.84% Impervious, Inflow Depth = 3.11" for 10-vr event	$\frac{(1000)}{212.50} = \frac{(3000)}{2.793} = \frac{(1000)}{372.0} = \frac{(3000)}{0} = \frac{(3000)}{(3000)} = \frac{(3000)}{($
flow = 15.28 cfs @ 12.29 hrs, Volume= 1.914 af	213.00 3,407 450.0 1,547 1,547 7,899
utflow = 4.34 cfs @ 12.89 hrs, Volume= 1.914 af, Atten= 72%, Lag= 35.8 min rimary = 4.34 cfs @ 12.89 hrs. Volume= 1.914 af	214.00 4,790 473.0 4,079 5,626 9,651 0.10 0.10 0.17 0 14.00 14.500
rimary = 4.34 cfs @ 12.89 hrs, Volume= 1.914 af	215.00 6,246 497.0 5,502 11,128 11,566
outing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs	Device Routing Invert Outlet Devices
eak Elev= 215.76' @ 12.89 hrs Surf.Area= 18,432 sf Storage= 24,747 cf	#1 Primary 212.83' 15.0" Round Culvert
ug-Flow detention time= 44.0 min calculated for 1.914 af (100% of inflow) enter-of-Mass det. time= 43.6 min (850.3 - 806.8)	L= 90.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 212.83' / 210.39' S= 0.0271 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf
	#2 Discarded 212.50' 2.410 in/hr Exfiltration over Surface area
blume Invert Avail.Storage Storage Description	Conductivity to Groundwater Elevation = 210.40'
#1 212.30' 64,778 cf Custom Stage Data (Irregular)Listed below (Recalc)	#3 Device 1 212.63' 3.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low hear
levation Surf.Area Perim. Inc.Store Cum.Store Wet.Area (feet) (sq-ft) (feet) (cubic-feet) (cubic-feet) (sq-ft)	Discarded OutFlow Max=0.25 cfs @ 12.53 hrs HW=213.14' (Free Discharge) ←2=Exfiltration (Controls 0.25 cfs)
212.30 50 75.0 0 0 50	
213.00 556 100.0 180 180 403 214.00 5.786 393.0 2.712 2.892 11.901	Primary OutFlow Max=0.13 cfs @ 12.53 hrs HW=213.14' (Free Discharge) ←1=Culvert (Passes 0.13 cfs of 0.36 cfs potential flow)
214.00 5,786 393.0 2,712 2,892 11,901 215.00 13,981 580.0 9,587 12,479 26,388	-3=Orifice/Grate (Orifice Controls 0.13 cfs @ 2.68 fps)
216.00 19,970 757.0 16,887 29,366 45,232	
217.00 53,560 1,442.0 35,412 64,778 165,106	

6842-Pre Prepared by {e HydroCAD® 10.1	enter your company name here} 10-3a s/n 03590 © 2020 HydroCAD Software S		10-yr Rainfall=4.44" Page 19	6842-Pre Prepared by {enter your company nam HydroCAD® 10.10-3a s/n 03590 © 2020 Hyd
	Summary for Link	Time span=0.0 Runoff by SCS T		
Inflow Area = Inflow = Primary =	30.660 ac, 30.26% Impervious, Inflow I 38.37 cfs @ 12.17 hrs, Volume= 38.37 cfs @ 12.17 hrs, Volume=	Depth = 2.23" for 10-y 5.690 af 5.690 af, Atten= 0%, I		Reach routing by Stor-Ind+ ⁻ Subcatchment1S: Pre A.1
Primary outflow	r = Inflow, Time Span= 0.00-72.00 hrs, dt= 0	.05 hrs		Subcatchment 2S: Pre A.2
				Subcatchment 3S: Pre A.3
				Subcatchment 4S: Pre B.1
				Subcatchment 5S: Pre B.2 Flow Lengi
				Subcatchment 6S: Pre C.2
				Subcatchment 7S: Pre C.1
				Subcatchment 8S: Roof Area A
				Subcatchment 13S: Roof Area B
				Subcatchment 14S: Pre A.4
				Pond 12P: Existing Wet Basin 15.0" Rour
				Pond 13P: Existing Infiltration Basin Discarded=0.29
				Link 11L: DP-A
				Total Runoff Area = 30.660

6842-Pre Prepared by {enter your company nar HydroCAD® 10.10-3a s/n 03590 © 2020 H	me here}	r 25-yr Rainfall=5.55" Page 20					
Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method							
Subcatchment 1S: Pre A.1	Runoff Area=242,230 sf 49.29% Impervi Flow Length=298' Tc=10.8 min CN=86 F						
Subcatchment 2S: Pre A.2	Runoff Area=289,668 sf 0.00% Impervi Flow Length=658' Tc=28.0 min CN=57						
Subcatchment 3S: Pre A.3	Runoff Area=19,199 sf 100.00% Impervi Tc=6.0 min CN=98	ious Runoff Depth=5.31" Runoff=2.34 cfs 0.195 af					
Subcatchment 4S: Pre B.1	Runoff Area=220,300 sf 66.26% Impervi Flow Length=736' Tc=24.4 min CN=91 F						
Subcatchment 5S: Pre B.2 Flow Len	Runoff Area=71,871 sf 5.57% Impervi gth=416' Tc=12.4 min UI Adjusted CN=70						
Subcatchment 6S: Pre C.2	Runoff Area=100,825 sf 0.00% Impervi Flow Length=364' Tc=16.2 min CN=74						
Subcatchment 7S: Pre C.1	Runoff Area=258,507 sf 5.40% Impervi Flow Length=754' Tc=15.2 min CN=75 F						
Subcatchment 8S: Roof Area A	Runoff Area=71,756 sf 100.00% Impervi Tc=6.0 min CN=98	ious Runoff Depth=5.31" Runoff=8.74 cfs 0.729 af					
Subcatchment 13S: Roof Area B	Runoff Area=29,814 sf 100.00% Impervi Tc=6.0 min CN=98	ious Runoff Depth=5.31" Runoff=3.63 cfs 0.303 af					
Subcatchment 14S: Pre A.4	Runoff Area=31,394 sf 0.00% Impervi Tc=6.0 min CN=43	ious Runoff Depth=0.52" Runoff=0.17 cfs 0.031 af					
Pond 12P: Existing Wet Basin 15.0" Rot	Peak Elev=216.30' Storage=36,550 cf and Culvert n=0.013 L=517.0' S=0.0011 '/' C						
Pond 13P: Existing Infiltration Basin Discarded=0.2	Peak Elev=213.37' Storage=2,908 cf 29 cfs 0.193 af Primary=0.17 cfs 0.034 af 0						
Link 11L: DP-A		Inflow=53.28 cfs 7.911 af rimary=53.28 cfs 7.911 af					
Total Runoff Area = 30.66	60 ac Runoff Volume = 8.104 af Avera 69.74% Pervious = 21.383 ac 30.26%	ge Runoff Depth = 3.17" ⁄ Impervious = 9.277 ac					

				name here 0 HvdroCAE	e}) Software Solutio	ns LLC	Page 21
							. ago 21
			Summ	ary for Si	ubcatchment	1S: Pre A.1	
Runoff	=	21.57 c	sfs @ 12.1	5 hrs, Volu	ime= 1.8	46 af, Depth= 3.98"	
Runoff b	y SCS TF	R-20 me	thod, UH=S	SCS, Weigh	ted-CN, Time Sp	an= 0.00-72.00 hrs, dt=	0.05 hrs
Type III	24-hr 25-	yr Raint	all=5.55"	-			
А	rea (sf)	CN	Description				
ł	71,903			ing, HSG A			
	41,850			ing, HSG B			
*	45,336			s cover, Go			
	77,493 485			s cover, Go ed pavemer			
	5,163			ed pavemer			
2	242,230		Weighted A		,		
1	22,829			rvious Area			
1	19,401			pervious Ar	ea		
	5,648		4.73% Unc	onnected			
Тс	Length	Slope	e Velocity	Capacity	Description		
(min)	(feet)	(ft/ft		(cfs)			
7.7	50	0.0100	0.11		Sheet Flow,		
						n= 0.150 P2= 2.95"	
2.9	223	0.0330) 1.27			entrated Flow,	
0.2	25	0.0081	1.83			entrated Flow,	
0.2	25	0.000	1.00		Paved Kv= 20		
10.8	298	Total					
			~				
			Summ	ary for Si	ubcatchment	2S: Pre A.2	
Runoff	=	5.69 c	fs @ 12.4	5 hrs, Volu	ime= 0.7	'81 af, Depth= 1.41"	
Runoff h		2-20 me	thod UH=S	SCS Weigh	ted-CN_Time Sr	an= 0.00-72.00 hrs, dt=	0.05 brs
	24-hr 25-			Joo, Molgh		an 0.00 / 2.00 mo, at	0.001110
,,							
A	rea (sf)		Description				
*	78,930		Woods, Go				
	49,074		Woods, Go				
* 1	31,909 116,373		Woods, Go >75% Gras		od, HSG A		
*	13,268			is cover, Go			

	Area (sf)	CN	Description
*	78,930	30	Woods, Good, HSG A
	49,074	55	Woods, Good, HSG B
	31,909	77	Woods, Good, HSG D
*	116,373	68	>75% Grass cover, Good, HSG A
*	13,268	79	>75% Grass cover, Good, HSG B
*	114	89	>75% Grass cover, Good, HSG D
	289,668	57	Weighted Average
	289,668		100.00% Pervious Area

	d by {en			name here 0 HydroCAE	Type III 24-hr 25-yr Rai e} 9 Software Solutions LLC	Page 22
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
3.8	50	0.0600	0.22		Sheet Flow,	
21.0	536	0.0037	0.43		Grass: Short n= 0.150 P2= 2.95" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps	
3.2	72	0.0055	0.37		Shallow Concentrated Flow, Woodland Kv= 5.0 fps	
28.0	658	Total				
			Summ	ary for S	ubcatchment 3S: Pre A.3	
Runoff	=	2.34 cf	s@ 12.0	9 hrs, Volu	me= 0.195 af, Depth= 5.31"	
	<u>rea (sf)</u> <u>19,199</u> 19,199 Length	98 F		ing, HSG A pervious A Capacity		
<u>(min)</u> 6.0	(feet)	(ft/ft)	(ft/sec)	(cfs)	Direct Entry,	
0.0					Direct Entry,	
			Summ	ary for S	ubcatchment 4S: Pre B.1	
Runoff	=	15.90 cf	s@ 12.3	2 hrs, Volu	me= 1.904 af, Depth= 4.52"	
		R-20 metł ∙yr Rainfa		CS, Weigh	ted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 h	nrs
A	rea (sf)	CN D	escription			
	59,394			ing, HSG A		
	49,116 36.430			ing, HSG B ing, HSG D		
*	3,947	68 >	75% Ġras	s cover, Go	ood, HSG A	
*	9,665				ood, HSG B	
^	556 1,032			s cover, Go ed pavemer	ood, HSG D	
	60,160			od, HSG D		
	20,300	91 V	Veighted A	verage		
	74,328			vious Area		
1	45,972			pervious Ar	ea	
	1,032	0	.71% Unc	onnected		

yaroor	D® 10.10-		company 590 © 202) Software Solutions LLC Page 23		
Тс	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Decemption		
19.0	50	0.0300	0.04		Sheet Flow,		
					Woods: Dense underbrush n= 0.800 P2= 2.95"		
3.0	100	0.0500	0.56		Shallow Concentrated Flow,		
					Forest w/Heavy Litter Kv= 2.5 fps		
2.4	586	0.0410	4.11		Shallow Concentrated Flow, Paved Kv= 20.3 fps		
24.4	736	Total					
			-				
			Summ	ary for Si	ubcatchment 5S: Pre B.2		
Runoff	=	3.76 cfs	s@ 12.1	8 hrs, Volu	me= 0.337 af, Depth= 2.45"		
	000 T						
				CS, weigh	ted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs		
ype m	24-hr 25-	yr Rainia	11=5.55				
A	rea (sf)	CN A	Adj Desc	ription			
	16,037	79			ver, Good, HSG B		
	15,072	89	>75%	6 Grass co	ver, Good, HSG D		
	2,551	98	Unco	Unconnected pavement, HSG B			
	1,451	98		onnected pa	avement, HSG D		
	32,793	55	Woo	onnected pa ds, Good, I	avement, HSG D HSG B		
	32,793 3,967	55 77	Woo Woo	onnected pa ds, Good, H ds, Good, H	avement, HSG D HSG B HSG D		
	32,793 3,967 71,871	55 77	Woo Woo 70 Weig	onnected pa ds, Good, H ds, Good, H jhted Avera	avement, HSG D HSG B HSG D nge, UI Adjusted		
	32,793 3,967 71,871 67,869	55 77	Woo <u>Woo</u> 70 Weig 94.43	onnected pa ds, Good, H ds, Good, H ghted Avera 3% Perviou	avement, HSG D HSG B HSG D Ige, Ul Adjusted is Area		
	32,793 3,967 71,871	55 77	Woo Woo 70 Weig 94.43 5.57	onnected pa ds, Good, H ds, Good, H jhted Avera	avement, HSG D HSG B HSG D uge, UI Adjusted Is Area us Area		
	32,793 3,967 71,871 67,869 4,002 4,002	55 77 71	Woo Woo 70 Weig 94.4: 5.57 ⁴ 100.4	onnected pa ds, Good, H <u>ds, Good, H</u> Jhted Avera 3% Perviou % Impervio 00% Uncon	avement, HSG D HSG B HSG D ge, Ul Adjusted is Area us Area unected		
Ţc	32,793 3,967 71,871 67,869 4,002 4,002 Length	55 77 71 Slope	Woo Woo 70 Weig 94.4 5.57 100.0 Velocity	onnected pa ds, Good, H ds, Good, H ghted Avera 3% Perviou % Impervio 00% Uncon Capacity	avement, HSG D HSG B HSG D ge, Ul Adjusted is Area us Area unected		
(min)	32,793 3,967 71,871 67,869 4,002 4,002 Length (feet)	55 77 71 Slope (ft/ft)	Woo Woo 70 Weig 94.4: 5.57' 100.1 Velocity (ft/sec)	onnected pa ds, Good, H <u>ds, Good, H</u> Jhted Avera 3% Perviou % Impervio 00% Uncon	avement, HSG D HSG B HSG D Ige, UI Adjusted Is Area us Area us Area inected Description		
	32,793 3,967 71,871 67,869 4,002 4,002 Length	55 77 71 Slope	Woo Woo 70 Weig 94.4 5.57 100.0 Velocity	onnected pa ds, Good, H ds, Good, H ghted Avera 3% Perviou % Impervio 00% Uncon Capacity	avement, HSG D HSG B HSG D Ige, UI Adjusted Is Area us Area us Area Inected Description Sheet Flow,		
(min) 7.5	32,793 3,967 71,871 67,869 4,002 4,002 Length (feet) 50	55 77 71 Slope (ft/ft) 0.0780	Woo Woo 70 Weig 94.4: 5.57' 100.1 Velocity (ft/sec) 0.11	onnected pa ds, Good, H ds, Good, H ghted Avera 3% Perviou % Impervio 00% Uncon Capacity	avement, HSG D HSG B HSG D ISG D Isge, UI Adjusted Is Area us Area us Area Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.95"		
(min)	32,793 3,967 71,871 67,869 4,002 4,002 Length (feet) 50	55 77 71 Slope (ft/ft)	Woo Woo 70 Weig 94.4: 5.57' 100.1 Velocity (ft/sec)	onnected pa ds, Good, H ds, Good, H ghted Avera 3% Perviou % Impervio 00% Uncon Capacity	avement, HSG D HSG B HSG D ge, UI Adjusted is Area us Area us Area inected Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.95" Shallow Concentrated Flow,		
(min) 7.5	32,793 3,967 71,871 67,869 4,002 4,002 Length (feet) 50	55 77 71 Slope (ft/ft) 0.0780 0.1000	Woo Woo 70 Weig 94.4: 5.57' 100.0 Velocity (ft/sec) 0.11 1.58	onnected pa ds, Good, H ds, Good, H ghted Avera 3% Perviou % Impervio 00% Uncon Capacity	avement, HSG D HSG B HSG D Ige, UI Adjusted Is Area us Area us Area unected Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.95" Shallow Concentrated Flow, Woodland Kv= 5.0 fps		
(min) 7.5 0.1	32,793 3,967 71,871 67,869 4,002 4,002 Length (feet) 50 10	55 77 71 Slope (ft/ft) 0.0780	Woo Woo 70 Weig 94.4: 5.57' 100.1 Velocity (ft/sec) 0.11	onnected pa ds, Good, H ds, Good, H ghted Avera 3% Perviou % Impervio 00% Uncon Capacity	avement, HSG D HSG B HSG D ge, UI Adjusted is Area us Area us Area inected Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.95" Shallow Concentrated Flow,		
(min) 7.5 0.1	32,793 3,967 71,871 67,869 4,002 4,002 Length (feet) 50 10	55 77 71 Slope (ft/ft) 0.0780 0.1000	Woo Woo 70 Weig 94.4: 5.57' 100.0 Velocity (ft/sec) 0.11 1.58	onnected pa ds, Good, H ds, Good, H ghted Avera 3% Perviou % Impervio 00% Uncon Capacity	avement, HSG D HSG B HSG D Ige, UI Adjusted Is Area us Area unected Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.95" Shallow Concentrated Flow, Woodland Kv= 5.0 fps Shallow Concentrated Flow,		
(min) 7.5 0.1 0.2 2.8	32,793 3,967 71,871 67,869 4,002 4,002 Length (feet) 50 10 39	55 77 71 Slope (ft/ft) 0.0780 0.1000 0.3230	Woo Woo 70 Weig 94.4 5.57 100.1 Velocity (ft/sec) 0.11 1.58 2.84	onnected pa ds, Good, H ds, Good, H ghted Avera 3% Perviou % Impervio 00% Uncon Capacity	avement, HSG D HSG B HSG D Use of the second sec		
(min) 7.5 0.1 0.2	32,793 3,967 71,871 67,869 4,002 4,002 Length (feet) 50 10 39	55 77 71 Slope (ft/ft) 0.0780 0.1000 0.3230	Woo Woo 70 Weig 94.4 5.57 100.1 Velocity (ft/sec) 0.11 1.58 2.84	onnected pa ds, Good, H ds, Good, H ghted Avera 3% Perviou % Impervio 00% Uncon Capacity	avement, HSG D HSG B HSG D ISG D Isge, UI Adjusted Is Area us Area us Area Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.95" Shallow Concentrated Flow, Woodland Kv= 5.0 fps Shallow Concentrated Flow,		
(min) 7.5 0.1 0.2 2.8 0.2	32,793 3,967 71,871 67,869 4,002 4,002 4,002 Length (feet) 50 10 39 165 10	55 77 71 Slope (ft/ft) 0.0780 0.1000 0.3230 0.3230 0.0380 0.0200	Woo Woo 70 Weig 94.4 5.57' 100.1 Velocity (ft/sec) 0.11 1.58 2.84 0.97 0.71	onnected pa ds, Good, H ds, Good, H ghted Avera 3% Perviou % Impervio 00% Uncon Capacity	avement, HSG D HSG B HSG D HSG D Use Cliptudjusted Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.95" Shallow Concentrated Flow, Woodland Kv= 5.0 fps Shallow Concentrated Flow, Woodland Kv= 5.0 fps		
(min) 7.5 0.1 0.2 2.8	32,793 3,967 71,871 67,869 4,002 4,002 4,002 Length (feet) 50 10 39 165	55 77 71 Slope (ft/ft) 0.0780 0.1000 0.3230 0.0380	Woo Woo 91.41 5.57' 100.1 Velocity (ft/sec) 0.11 1.58 2.84 0.97	onnected pa ds, Good, H ds, Good, H ghted Avera 3% Perviou % Impervio 00% Uncon Capacity	avement, HSG D HSG B HSG D Ige, UI Adjusted Is Area us Area us Area Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.95" Shallow Concentrated Flow, Woodland Kv= 5.0 fps Shallow Concentrated Flow,		
(min) 7.5 0.1 0.2 2.8 0.2 0.8	32,793 3,967 71,871 67,869 4,002 4,002 4,002 Length (feet) 50 10 39 165 10 55	55 77 71 Slope (ft/ft) 0.0780 0.1000 0.3230 0.0380 0.0380 0.0200 0.0520	Woo 70 Weic 94.4; 5.57' 100.1 0.11 1.58 2.84 0.97 0.71 1.14 1.14	onnected pa ds, Good, H ds, Good, H ghted Avera 3% Perviou % Impervio 00% Uncon Capacity	avement, HSG D HSG B HSG D Ige, UI Adjusted Is Area us Area us Area us Area Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.95" Shallow Concentrated Flow, Woodland Kv= 5.0 fps Shallow Concentrated Flow, Woodland Kv= 5.0 fps		
(min) 7.5 0.1 0.2 2.8 0.2	32,793 3,967 71,871 67,869 4,002 4,002 4,002 Length (feet) 50 10 39 165 10 55	55 77 71 Slope (ft/ft) 0.0780 0.1000 0.3230 0.3230 0.0380 0.0200	Woo Woo 70 Weig 94.4 5.57' 100.1 Velocity (ft/sec) 0.11 1.58 2.84 0.97 0.71	onnected pa ds, Good, H ds, Good, H ghted Avera 3% Perviou % Impervio 00% Uncon Capacity	avement, HSG D HSG B HSG D Ige, UI Adjusted Is Area us Area us Area Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.95" Shallow Concentrated Flow, Woodland Kv= 5.0 fps Shallow Concentrated Flow,		

12.4 416 Total

	d by {en			name here 0 HydroCAD	Type III 24-hr 25-yr Rainfall=5.55" e} Software Solutions LLC Page 24				
	Summary for Subcatchment 6S: Pre C.2								
Runoff	=	5.54 cfs	s@ 12.2	3 hrs, Volu	me= 0.542 af, Depth= 2.81"				
	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-yr Rainfall=5.55"								
A	rea (sf)	CN D	escription						
*	ood, HSG B ood, HSG D								
	00,825 00,825		Veighted A 00.00% Pe	verage ervious Are	а				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.8	18	0.0160	0.03		Sheet Flow,				
2.5	33	0.0730	0.22		Woods: Dense underbrush n= 0.800 P2= 2.95" Sheet Flow, Cross: Sheet = 0.450, P2= 2.05"				
0.8	121	0.1440	2.66		Grass: Short n= 0.150 P2= 2.95" Shallow Concentrated Flow.				
0.1	10	0.1790	2.12		Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow,				
0.3	41	0.1260	2.48		Woodland Kv= 5.0 fps Shallow Concentrated Flow,				
1.5	125	0.0800	1.41		Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow,				
0.1	6	0.0170	0.91		Woodland Kv= 5.0 fps Shallow Concentrated Flow, Short Crear Desture, Kv= 7.0 fpp				
0.0	5	0.0210	2.94		Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, Paved Kv= 20.3 fps				
0.1	5	0.0190	0.96		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps				
16.2	364	Total							

Summary for Subcatchment 7S: Pre C.1

Runoff = 15.13 cfs @ 12.21 hrs, Volume=

ume= 1.435 af, Depth= 2.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr $\,$ 25-yr Rainfall=5.55"

HydroCA	D® 10.10-	-3a s/n 03	3590 © 2020) HydroCAD	Software Solutions LLC Page
	rea (sf)		Description		
*	78,314			s cover, Go	
^ 1	47,609 2,514		>75% Grass Roofs. HSG	s cover, Go	od, HSG B
	11,441		Paved parki		
	18,629		Noods, Goo		
	58,507		Veighted Av 94.60% Per		
2	44,552 13,955			rvious Area	
	,				
	Length		Velocity		Description
(min) 1.9	(feet) 10	(ft/ft) 0.1000		(cfs)	Sheet Flow.
1.5	10	0.1000	0.05		Woods: Light underbrush n= 0.400 P2= 2.95"
2.7	40	0.0900	0.25		Sheet Flow,
1.1	120	0.0700	1.85		Grass: Short n= 0.150 P2= 2.95" Shallow Concentrated Flow,
1.1	120	0.0700	1.05		Short Grass Pasture Kv= 7.0 fps
0.5	36	0.0650	1.27		Shallow Concentrated Flow,
1.6	175	0.0650	1.78		Woodland Kv= 5.0 fps Shallow Concentrated Flow,
1.0	1/5	0.0650	1.70		Short Grass Pasture Kv= 7.0 fps
0.0	5	0.0190	2.80		Shallow Concentrated Flow,
7.4	260	0.0140	0.02		Paved Kv= 20.3 fps
7.4	300	0.0140	0.83		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
15.2	754	Total			
			Summon	for Sube	atchment 8S: Roof Area A
			Summary		atchinent 65. Roof Area A
Runoff	=	8.74 ct	fs @ 12.09	hrs, Volu	me= 0.729 af, Depth= 5.31"
Pupoff b		2 20 mot		CS Woight	ed-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Type III 2	24-hr 25-	-yr Rainfa	all=5.55"	CS, Weight	ed-CN, Time Span- 0.00-72.00 firs, di- 0.03 firs
A	rea (sf)		Description	D	
	<u>71,756</u> 71,756		Roofs, HSG	B pervious Ar	202
	11,150		100.00 /0 111	pervious Ai	ea
	Length		Velocity		Description
<u>(min)</u> 6.0	(feet)	(ft/ft)	(ft/sec)	(cfs)	Direct Entry,
0.0					Direct Entry,
		S	Summary	for Subc	atchment 13S: Roof Area B
Runoff	=	3.63 c	fs @ 12.09	9 hrs, Volu	me= 0.303 af, Depth= 5.31"
					ed-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

_							olutions LLC		Page 26
		CN		ription					
	9,814	98		, HSG					
25	9,814		100.0	0% Im	pervious A	rea			
Tc L (min)	ength. (feet)	Slope (ft/ft		locity /sec)	Capacity (cfs)	Descriptio	n		
6.0						Direct En	try,		
			Su	Imma	ry for Su	ıbcatchm	ent 14S: Pre	A.4	
Runoff	=	0.17	cfs @	12.29	hrs, Volu	ime=	0.031 af, De	pth= 0.52"	
Runoff by S Type III 24					CS, Weigh	ted-CN, Tir	ne Span= 0.00-	72.00 hrs, dt= 0.05	hrs
۵re	a (sf)	CN	Desci	ription					
	2 (31)),963	68			cover. Go	ood, HSG A			
20	0,431	30	Wood	ls, Goo	d, HSĠ A				
	1,394 1,394	43		nted A	/erage rvious Are	•			
5	1,004								
(min)	ength. (feet)	Slope (ft/ft		locity /sec)	Capacity (cfs)	Descriptic	n		
6.0						Direct En	try,		
			Sun	nmary	/ for Por	nd 12P: E	kisting Wet I	Basin	
nflow Area							Depth = 4.13"	for 25-yr event	
nflow					hrs, Volu		2.544 af	700/ 1 //	. ·
Dutflow Primary	=				'hrs, Volu 'hrs, Volu		2.544 af, At 2.544 af	en= 76%, Lag= 41.	3 min
,			0		,				
						2.00 hrs, dt 3.314 sf St	= 0.05 hrs orage= 36,550	cf	
		0				,	0		
					alculated fo 861.6 - 80		(100% of inflow)	
/olume #1	212.30			Storage 1,778 c	0	e Descriptio m Stage Da		isted below (Recalc)
						Ū	,	,	,
Elevation (feet)	:	Surf.A	rea I-ft)	Perin (fee		Inc.Store ubic-feet)	Cum.Stor (cubic-feet		
212.30		(00	50	75.	/	0		$\frac{(34.10)}{50}$	
213.00		5	556	100.		180	18		
214.00			786	393.		2,712	2,89		
01E 00		13,9		580.		9,587	12,47		
215.00		19,9		757.		16,887	29,36		
216.00		53,5	000	1,442.	0	35,412	64,77	3 165,106	

6842-Pre	Type III 24-hr 25-yr Rainfall=5.55"
Prepared by {enter your company name here}	
HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solut	tions LLC Page 27

Device Routing Invert Outlet Devices
 15.0"
 Round Culvert

 L= 517.0'
 CPP, projecting, no headwall, Ke= 0.900

 Inlet / Outlet Invert= 212.37' / 211.80'
 S= 0.0011 '/'
 #1 Primary 212.37' n= 0.013 Concrete pipe, straight & clean, Flow Area= 1.23 sf

Primary OutFlow Max=4.75 cfs @ 12.97 hrs HW=216.30' (Free Discharge) -1=Culvert (Barrel Controls 4.75 cfs @ 3.87 fps)

Summary for Pond 13P: Existing Infiltration Basin

Inflow Area =	1.161 ac, 37.95% Impervious, Inflow Depth = 2.3	4" for 25-yr event
Inflow =	2.44 cfs @ 12.09 hrs, Volume= 0.226 af	
Outflow =	0.47 cfs @ 12.57 hrs, Volume= 0.226 af,	Atten= 81%, Lag= 28.5 min
Discarded =	0.29 cfs @ 12.57 hrs, Volume= 0.193 af	-
Primary =	0.17 cfs @ 12.57 hrs, Volume= 0.034 af	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 213.37' @ 12.57 hrs Surf.Area= 3,895 sf Storage= 2,908 cf

Plug-Flow detention time= 57.3 min calculated for 0.226 af (100% of inflow) Center-of-Mass det. time= 57.3 min (830.6 - 773.3)

Volume	Invert	Avail.	Storage	Storage Descriptio	n	
#1	212.50'	1	1,128 cf	Custom Stage Da	ta (Irregular) Liste	d below (Recalc)
Elevation (feet)	Sur	f.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
212.50		2,793	372.0	0	0	2,793
213.00 214.00		3,407 4,790	450.0 473.0	1,547 4,079	1,547 5,626	7,899 9,651
215.00		6,246	497.0	5,502	11,128	11,566
Device R	outing	Inv	ert Outle	et Devices		

801100	rtouting		
#1	Primary	212.83'	15.0" Round Culvert
			L= 90.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 212.83' / 210.39' S= 0.0271 '/' Cc= 0.900
			n= 0.013, Flow Area= 1.23 sf
#2	Discarded	212.50'	2.410 in/hr Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 210.40'
#3	Device 1	212.63'	3.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads

Discarded OutFlow Max=0.29 cfs @ 12.57 hrs HW=213.37' (Free Discharge) **2=Exfiltration** (Controls 0.29 cfs)

Primary OutFlow Max=0.17 cfs @ 12.57 hrs HW=213.37' (Free Discharge) 1=Culvert (Passes 0.17 cfs of 1.01 cfs potential flow) -3=Orifice/Grate (Orifice Controls 0.17 cfs @ 3.55 fps)

6842-Pre	Type III 24-hr 25-yr Rainfall=5.55"	,
Prepared by {enter your company name here}		
HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Sol	lutions LLC Page 28	6

Summary for Link 11L: DP-A

Inflow Area =	30.660 ac, 30.26% Impervious, Inflow I	Depth = 3.10" for 25-yr event
Inflow =	53.28 cfs @ 12.17 hrs, Volume=	7.911 af
Primary =	53.28 cfs @ 12.17 hrs, Volume=	7.911 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Prepared by {enter your company r HydroCAD® 10.10-3a s/n 03590 © 2020		Page 29
Runoff by SC	:0.00-72.00 hrs, dt=0.05 hrs, 1441 points :S TR-20 method, UH=SCS, Weighted-CN nd+Trans method - Pond routing by Stor-Ind metho	d
Subcatchment 1S: Pre A.1	Runoff Area=242,230 sf 49.29% Impervious RL Flow Length=298' Tc=10.8 min CN=86 Runoff=3	
Subcatchment 2S: Pre A.2	Runoff Area=289,668 sf 0.00% Impervious Rt Flow Length=658' Tc=28.0 min CN=57 Runoff=1	
Subcatchment 3S: Pre A.3	Runoff Area=19,199 sf 100.00% Impervious Ru Tc=6.0 min CN=98 Runoff=	
Subcatchment 4S: Pre B.1	Runoff Area=220,300 sf 66.26% Impervious Rt Flow Length=736' Tc=24.4 min CN=91 Runoff=2	
Subcatchment 5S: Pre B.2 Flow L	Runoff Area=71,871 sf 5.57% Impervious Ru ength=416' Tc=12.4 min UI Adjusted CN=70 Runoff=	
Subcatchment 6S: Pre C.2	Runoff Area=100,825 sf 0.00% Impervious Rt Flow Length=364' Tc=16.2 min CN=74 Runoff=	
Subcatchment7S: Pre C.1	Runoff Area=258,507 sf 5.40% Impervious Rt Flow Length=754' Tc=15.2 min CN=75 Runoff=2	
Subcatchment 8S: Roof Area A	Runoff Area=71,756 sf 100.00% Impervious Ru Tc=6.0 min CN=98 Runoff=1	
Subcatchment 13S: Roof Area B	Runoff Area=29,814 sf 100.00% Impervious Ru Tc=6.0 min CN=98 Runoff=	
Subcatchment 14S: Pre A.4	Runoff Area=31,394 sf 0.00% Impervious Ru Tc=6.0 min CN=43 Runoff=	
Pond 12P: Existing Wet Basin 15.0" F	Peak Elev=216.98' Storage=63,901 cf Inflow=3 cound Culvert n=0.013 L=517.0' S=0.0011 '/' Outflow=	
Pond 13P: Existing Infiltration Basin Discarded=	Peak Elev=213.93' Storage=5,306 cf Inflow= 0.40 cfs 0.283 af Primary=0.25 cfs 0.082 af Outflow=	
Link 11L: DP-A		.26 cfs 12.748 af .26 cfs 12.748 af

69.74% Pervious = 21.383 ac 30.26% Impervious = 9.277 ac

6842-						Type III 24-hr	100-yr Rainfall=7.81
			r company 03590 © 202			olutions LLC	Page 3
			Summ	ary for Su	ıbcatchm	ent 1S: Pre A.1	
Runoff	f =	32.63	cfs @ 12.1	ō hrs, Volu	me=	2.849 af, Depth= 6.1	5"
			ethod, UH=S nfall=7.81"	CS, Weight	ed-CN, Tim	ne Span= 0.00-72.00 hrs	, dt= 0.05 hrs
	Area (sf)	CN	Description				
*	71,903	98	Paved park				
*	41,850	98	Paved park				
*	45,336 77,493	68 79	>75% Gras >75% Gras				
	485	98	Unconnecte				
	5,163	98	Unconnecte	d pavemen	t, HSG B		
	242,230	86	Weighted A				
	122,829		50.71% Per				
	119,401 5.648		49.29% Imp 4.73% Unco		a		
	0,040		4.7070 01100	micolou			
Т	c Length		e Velocity		Description	n	
(min			//	(cfs)			
7.	7 50	0.0100	0 0.11		Sheet Flor	w, ort n= 0.150 P2= 2.95	"
2.9	9 223	0.0330	0 1.27			concentrated Flow,	
		0.000				ss Pasture Kv= 7.0 fps	
0.:	2 25	0.008	1 1.83			oncentrated Flow,	
10.	8 298	Total			Paved K	/= 20.3 fps	
10.	0 290	TOLAI					
			Summ	ary for Su	ıbcatchm	ent 2S: Pre A.2	
Runoff	=	12.56	cfs @ 12.4	2 hrs, Volu	me=	1.589 af, Depth= 2.8	7"
				CS, Weight	ed-CN, Tim	ne Span= 0.00-72.00 hrs	, dt= 0.05 hrs
i ype I	11 24-nr 10	u-yr Rai	nfall=7.81"				
	Area (sf)	CN	Description				
*	78,930	30	Woods, Go				
	49,074	55	Woods, Go				
*	31,909	77 69	Woods, Go				
*	116,373 13,268	68 79	>75% Gras >75% Gras				
*	114	89	>75% Gras				
	289.668	57	Weighted A	vorago			
	209,000	57	100.00% Pe				

842-P	re				Type III 24-hr 100-yr Rainfall=7.81"
				name here	
ydroCA	D® 10.10-	-3a s/n 03	590 © 202	U HydroCAL	O Software Solutions LLC Page 31
	Length		Velocity		Description
(min) 3.8	(feet) 50	(ft/ft) 0.0600	(ft/sec) 0.22	(cfs)	Sheet Flow,
0.0	50	0.0000	0.22		Grass: Short n= 0.150 P2= 2.95"
21.0	536	0.0037	0.43		Shallow Concentrated Flow,
3.2	70	0.0055	0.37		Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow,
J.Z	12	0.0055	0.37		Woodland $Kv = 5.0 \text{ fps}$
28.0	658	Total			
			Summ	arv for Si	ubcatchment 3S: Pre A.3
				•	
lunoff	=	3.30 ct	s@ 12.0	9 hrs, Volu	ime= 0.278 af, Depth= 7.57"
lunoff b	y SCS TF	R-20 meth	nod, UH=S	CS, Weigh	ted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
ype III 2	24-hr 100	0-yr Raint	fall=7.81"		
^	rea (sf)	CN E	escription		
A			escription		
	19 199	98 F	aved nark	ing HSG A	
	<u>19,199</u> 19,199			ing, HSG A pervious A	
	19,199	1	00.00% Im	pervious A	vrea
	19,199 Length	1 Slope	00.00% Im Velocity	pervious A Capacity	vrea
(min)	19,199	1	00.00% Im	pervious A	nrea Description
	19,199 Length	1 Slope	00.00% Im Velocity	pervious A Capacity	vrea
(min)	19,199 Length	1 Slope	00.00% Im Velocity (ft/sec)	pervious A Capacity (cfs)	nrea Description
(min)	19,199 Length	1 Slope (ft/ft)	00.00% Im Velocity (ft/sec)	pervious A Capacity (cfs)	Description Direct Entry, ubcatchment 4S: Pre B.1
(min) 6.0 Runoff	19,199 Length (feet)	1 Slope (ft/ft) 23.22 cf	Velocity (ft/sec) Summ s @ 12.3	Capacity (cfs) ary for St 2 hrs, Volu	wrea Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 2.839 af, Depth= 6.74"
(min) 6.0 Runoff Runoff b	19,199 Length (feet) = y SCS TF	1 Slope (ft/ft) 23.22 cf: R-20 metl	Velocity (ft/sec) Summ s @ 12.3 nod, UH=S	Capacity (cfs) ary for St 2 hrs, Volu	Description Direct Entry, ubcatchment 4S: Pre B.1
(min) 6.0 Runoff Runoff b	19,199 Length (feet) = y SCS TF	1 Slope (ft/ft) 23.22 cf: R-20 metl	Velocity (ft/sec) Summ s @ 12.3	Capacity (cfs) ary for St 2 hrs, Volu	wrea Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 2.839 af, Depth= 6.74"
(min) 6.0 Runoff Runoff b Type III :	19,199 Length (feet) = y SCS TF 24-hr 100 rea (sf)	1 Slope (ft/ft) 23.22 cf R-20 meth D-yr Raint CN E	00.00% Im Velocity (ft/sec) Summ s @ 12.3 nod, UH=S fall=7.81" Description	Appervious A Capacity (cfs) ary for Su 2 hrs, Volu CS, Weigh	wrea Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 2.839 af, Depth= 6.74" ted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
(min) 6.0 Runoff Runoff b Sype III 2 A	19,199 Length (feet) = y SCS TF 24-hr 100 rea (sf) 59,394	1 Slope (ft/ft) 23.22 cf R-20 mett 0-yr Raint <u>CN E</u> 98 F	00.00% Im Velocity (ft/sec) Summ s @ 12.3 nod, UH=S fall=7.81" Description Paved park	Capacity (cfs) ary for Su 2 hrs, Volu CS, Weigh	wrea Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 2.839 af, Depth= 6.74" ted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
(min) 6.0 Runoff Runoff b Sype III 2 A	19,199 Length (feet) = y SCS TF 24-hr 100 rea (sf) 59,394 49,116	1 Slope (ft/ft) 23.22 cf R-20 mett 0-yr Raint 0-yr Raint <u>CN E</u> 98 F 98 F	00.00% In Velocity (ft/sec) Summ s @ 12.3 nod, UH=S fall=7.81" Description vaved park Paved park	ary for Su cry for Su 2 hrs, Volu CS, Weigh ing, HSG A ing, HSG B	wrea Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 2.839 af, Depth= 6.74" ted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
(min) 6.0 Runoff Runoff b Sype III 2 A	19,199 Length (feet) = y SCS TF 24-hr 100 rea (sf) 59,394 49,116 36,430	1 Slope (ft/ft) 23.22 cf R-20 mett D-yr Raint O-yr Raint O-yr Raint 98 F 98 F 98 F 98 F	00.00% Irr Velocity (ft/sec) Summ s @ 12.3 nod, UH=S fall=7.81" Description 'aved park 'aved park 'aved park	ary for Su cry for Su ary for Su 2 hrs, Volu CS, Weigh ing, HSG A ing, HSG B ing, HSG D	Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 2.839 af, Depth= 6.74" ted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
(min) 6.0 Runoff Runoff b Sype III 2 A	19,199 Length (feet) = y SCS TF 24-hr 100 rea (sf) 59,394 49,116	1 Slope (ft/ft) 23.22 cf R-20 mett 0-yr Raint 0-yr Raint 98 F 98 F 98 F 98 F 98 F	00.00% Irr Velocity (ft/sec) Summ s @ 12.3 nod, UH=S iall=7.81" Description 'aved park 'aved park 'aved park 'aved park 'aved park	Capacity (cfs) ary for Su 2 hrs, Volu CS, Weigh ing, HSG A ing, HSG B s cover, Gc	wrea Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 2.839 af, Depth= 6.74" ted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
(min) 6.0 Runoff Runoff b Sype III 2 A	19,199 Length (feet) = y SCS TF 24-hr 100 rea (sf) 59,394 49,116 36,430 3,947	1 Slope (ft/ft) 23.22 cf R-20 meth D-yr Raint O-yr Raint 98 F 98 F 98 F 98 F 98 F 98 7 98 7 97 >	00.00% Irr Velocity (ft/sec) Summ s @ 12.3 nod, UH=S fall=7.81" Description Paved park raved park raved park r75% Gras 75% Gras	capacity (cfs) ary for Si 2 hrs, Volu CS, Weigh ing, HSG A ing, HSG B ing, HSG B s cover, Gc s cover, Gc	Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 2.839 af, Depth= 6.74" ted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs bod, HSG A
(min) 6.0 Runoff Runoff b ype III : A	19,199 Length (feet) = y SCS TF 24-hr 100 rea (sf) 59,394 49,116 36,430 3,947 9,665 556 1,032	1 Slope (ft/ft) 23.22 cf R-20 mett D-yr Raint O-yr Raint 98 F 98 F 98 F 98 F 68 > 79 > 89 > 89 >	00.00% Irr Velocity (ft/sec) Summ s @ 12.3 nod, UH=S fall=7.81" Description 'aved park 'aved park 'aved park 'zs% Gras 75% Gras 75% Gras	ary for Su (cfs) ary for Su 2 hrs, Volu CS, Weigh ing, HSG A ing, HSG B ing, HSG B ing, HSG B s cover, Gc s cover, Gc s cover, Gc	Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 2.839 af, Depth= 6.74" ted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs bod, HSG A bod, HSG A bod, HSG B bod, HSG D bod, HSG D bod, HSG B
(min) 6.0 Runoff Runoff b ype III : A	19,199 Length (feet) = y SCS TF 24-hr 100 rea (sf) 59,394 49,116 36,430 3,947 9,665 5566 1,032 60,160	1 Slope (ft/ft) 23.22 cf -20 mett -yr Raint 98 F 98 F 98 F 98 F 98 F 98 F 98 F 98 F	00.00% Irr Velocity (ft/sec) Summ s @ 12.3 nod, UH=S iall=7.81" Description aved park aved park vaved park 75% Gras 75% Gras 75% Gras 75% Gras	Ary for Su (cfs) ary for Su 2 hrs, Volu CS, Weigh ing, HSG B ing, HSG B is, Cover, Gc s cover, Gc s cover, Gc s cover, Gc s cover, Gc	Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 2.839 af, Depth= 6.74" ted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs bod, HSG A bod, HSG A bod, HSG B bod, HSG D bod, HSG D bod, HSG B
(min) 6.0 Runoff Runoff b Type III 2 A	19,199 Length (feet) = y SCS TF 24-hr 100 rea (sf) 59,394 49,116 36,430 3,947 9,665 556 1,032 9,665 20,300	1 Slope (ft/ft) 23.22 cf R-20 meth D-yr Raint O-yr Raint 98 F 98 F 98 F 98 F 98 F 98 F 98 S 98 S 79 > 98 L 77 V 91 V	00.00% In Velocity (ft/sec) Summ s @ 12.3 nod, UH=S fall=7.81" Description Paved park raved park raved park r5% Gras 75% Gras 75% Gras Voods, Goa Veighted A	capacity (cfs) ary for Si 2 hrs, Volu CS, Weigh ing, HSG A ing, HSG B ing, HSG B ing, HSG B s cover, Gc s cover, Gc s cover, Gc s cover, Gc s cover, Gc s cover, Gc s cover, Gc	Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 2.839 af, Depth= 6.74" ted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
(min) 6.0 Runoff b Sype III : A	19,199 Length (feet) = y SCS TF 24-hr 100 rea (sf) 59,394 49,116 36,430 3,947 9,665 5566 1,032 60,160	1 Slope (ft/ft) 23.22 cf R-20 meth D-yr Raint O-yr Raint 98 F 98 F 98 F 98 F 98 F 98 F 98 F 98 F	00.00% Irr Velocity (ft/sec) Summ s @ 12.3 nod, UH=S fall=7.81" Description Paved park 75% Gras 75% Gras 75% Gras 75% Gras 75% Gras 75% Gras 75% Gras 75% Gras 75% Gras	Ary for Su (cfs) ary for Su 2 hrs, Volu CS, Weigh ing, HSG B ing, HSG B is, Cover, Gc s cover, Gc s cover, Gc s cover, Gc s cover, Gc	Description Direct Entry, ubcatchment 4S: Pre B.1 ume= 2.839 af, Depth= 6.74" ted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs bod, HSG A bod, HSG A bod, HSG B bod, HSG B bod, HSG B

			company 590 © 202		S Software Solutions LLC Page 32
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
19.0	50	0.0300	0.04		Sheet Flow, Woods: Dense underbrush n= 0.800 P2= 2.95"
3.0	100	0.0500	0.56		Shallow Concentrated Flow, Forest w/Heavy Litter Kv= 2.5 fps
2.4	586	0.0410	4.11		Shallow Concentrated Flow, Paved Kv= 20.3 fps
24.4	736	Total			
			Summ	ary for Su	ubcatchment 5S: Pre B.2
Runoff	=	6.72 cfs	s@ 12.1	7 hrs, Volu	ume= 0.591 af, Depth= 4.30"
		2 20 moth		CS Woigh	ted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
	24-hr 100			co, weign	ted-CN, Time Span- 0.00-72.00 his, dt- 0.05 his
A	vrea (sf)	CN A	Adj Deso	rintion	
	16,037	79	>75%	6 Grass co	ver, Good, HSG B
	15,072	89	>75% >75%	% Grass co % Grass co	ver, Good, HSG D
	15,072 2,551	89 98	>75% >75% Unco	6 Grass co 6 Grass co 5 onnected pa	ver, Good, HSG D avement, HSG B
	15,072	89	>75% >75% Unco Unco	6 Grass co 6 Grass co 5 onnected pa	ver, Good, HSG D avement, HSG B avement, HSG D
	15,072 2,551 1,451	89 98 98	>75% >75% Unco Unco Woo	6 Grass co 6 Grass co 5 onnected pa 5 onnected pa	ver, Good, HSG D avement, HSG B avement, HSG D HSG B
	15,072 2,551 1,451 32,793 3,967 71,871	89 98 98 55 77	>75% >75% Unco Unco Woo Woo 70 Weig	6 Grass co 6 Grass co onnected pa onnected pa ds, Good, H ds, Good, H ghted Avera	ver, Good, HSG D avement, HSG B avement, HSG D HSG B HSG D age, UI Adjusted
	15,072 2,551 1,451 32,793 3,967 71,871 67,869	89 98 98 55 77	>75% >75% Unco Unco Woo Woo 70 Weig 94.4	6 Grass co 6 Grass co onnected pa onnected pa ds, Good, H ds, Good, H ghted Avera 3% Perviou	ver, Good, HSG D avement, HSG B avement, HSG D HSG B HSG D ge, UI Adjusted is Area
	15,072 2,551 1,451 32,793 3,967 71,871 67,869 4,002	89 98 98 55 77	>759 >759 Unco Woo Woo 70 Weig 94.4 5.57	6 Grass co 6 Grass co onnected pa onnected pa ds, Good, H ds, Good	ver, Good, HSG D avement, HSG B avement, HSG D HSG D HSG D ge, UI Adjusted Is Area us Area
r	15,072 2,551 1,451 32,793 3,967 71,871 67,869	89 98 98 55 77	>759 >759 Unco Woo Woo 70 Weig 94.4 5.57	6 Grass co 6 Grass co onnected pa onnected pa ds, Good, H ds, Good, H ghted Avera 3% Perviou	ver, Good, HSG D avement, HSG B avement, HSG D HSG D HSG D ge, UI Adjusted Is Area us Area
Tc	15,072 2,551 1,451 32,793 3,967 71,871 67,869 4,002	89 98 98 55 77	>759 >759 Unco Woo Woo 70 Weig 94.4 5.57	6 Grass co 6 Grass co onnected pa onnected pa ds, Good, H ds, Good	ver, Good, HSG D avement, HSG B avement, HSG D HSG D HSG D ge, UI Adjusted Is Area us Area
Tc (min)	15,072 2,551 1,451 32,793 3,967 71,871 67,869 4,002 4,002	89 98 98 55 77 71	>759 >759 Uncc Woo Woo 70 Weig 94.4 5.57 100.	% Grass co % Grass co onnected pa onnected pa ds, Good, H ds, Good, H ghted Avera 3% Perviou % Impervio 00% Uncon	ver, Good, HSG D avement, HSG B avement, HSG D HSG B HSG D age, UI Adjusted Is Area us Area unected
	15,072 2,551 1,451 32,793 3,967 71,871 67,869 4,002 4,002 Length	89 98 98 55 77 71 Slope	>759 >759 Uncc Woo Woo 70 Weig 94.4 5.57 100.0	% Grass co % Grass co onnected pa ds, Good, H ds, Good, H ghted Avera 3% Perviou % Impervio 00% Uncon	ver, Good, HSG D avement, HSG B avement, HSG D HSG B HSG D uge, UI Adjusted is Area us Area us Area inected Description Sheet Flow,
(min) 7.5	15,072 2,551 1,451 32,793 3,967 71,871 67,869 4,002 4,002 4,002 Length (feet) 50	89 98 98 55 77 71 Slope (ft/ft) 0.0780	>75% >75% Uncc Woo 70 Weig 94.4 5.57 100.1 Velocity (ft/sec) 0.11	% Grass co % Grass co onnected pa ds, Good, H ds, Good, H ghted Avera 3% Perviou % Impervio 00% Uncon	ver, Good, HSG D avement, HSG B avement, HSG D HSG B HSG D age, UI Adjusted is Area us Area us Area innected Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.95"
(min)	15,072 2,551 1,451 32,793 3,967 71,871 67,869 4,002 4,002 4,002 Length (feet)	89 98 55 77 71 Slope (ft/ft)	>759 >759 Uncc Woo 70 Weig 94.4 5.57 100.1 Velocity (ft/sec)	% Grass co % Grass co onnected pa ds, Good, H ds, Good, H ghted Avera 3% Perviou % Impervio 00% Uncon	ver, Good, HSG D avement, HSG B avement, HSG D HSG B HSG D age, UI Adjusted is Area us Area us Area unected Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.95" Shallow Concentrated Flow,
(min) 7.5 0.1	15,072 2,551 1,451 32,793 3,967 71,871 67,869 4,002 4,002 Length (feet) 50 10	89 98 55 77 71 Slope (ft/ft) 0.0780 0.1000	>75% >75% Uncc Woo 70 Weig 94.4 5.57 100.1 Velocity (ft/sec) 0.11 1.58	% Grass co % Grass co onnected pa ds, Good, H ds, Good, H ghted Avera 3% Perviou % Impervio 00% Uncon	ver, Good, HSG D avement, HSG B avement, HSG D HSG B HSG D uge, UI Adjusted is Area us Area unected Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.95" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
(min) 7.5	15,072 2,551 1,451 32,793 3,967 71,871 67,869 4,002 4,002 4,002 Length (feet) 50	89 98 98 55 77 71 Slope (ft/ft) 0.0780	>75% >75% Uncc Woo 70 Weig 94.4 5.57 100.1 Velocity (ft/sec) 0.11	% Grass co % Grass co onnected pa ds, Good, H ds, Good, H ghted Avera 3% Perviou % Impervio 00% Uncon	ver, Good, HSG D avement, HSG B avement, HSG D HSG B HSG D uge, UI Adjusted is Area us Area unected Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.95" Shallow Concentrated Flow, Woodland Kv= 5.0 fps Shallow Concentrated Flow,
(min) 7.5 0.1	15,072 2,551 1,451 32,793 3,967 71,871 67,869 4,002 4,002 Length (feet) 50 10	89 98 55 77 71 Slope (ft/ft) 0.0780 0.1000	>75% >75% Uncc Woo 70 Weig 94.4 5.57 100.1 Velocity (ft/sec) 0.11 1.58	% Grass co % Grass co onnected pa ds, Good, H ds, Good, H ghted Avera 3% Perviou % Impervio 00% Uncon	ver, Good, HSG D avement, HSG B avement, HSG D HSG B HSG D uge, UI Adjusted is Area us Area unected Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.95" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
(min) 7.5 0.1 0.2 2.8	15,072 2,551 1,451 32,793 3,967 71,871 67,869 4,002 4,002 Length (feet) 50 10 39	89 98 55 77 71 Slope (ft/ft) 0.0780 0.1000 0.3230 0.0380	>759 >759 Uncc Woo 70 Weig 94.4 5.57 100.1 Velocity (ft/sec) 0.11 1.58 2.84 0.97	% Grass co % Grass co onnected pa ds, Good, H ds, Good, H ghted Avera 3% Perviou % Impervio 00% Uncon	ver, Good, HSG D avement, HSG B avement, HSG D HSG B HSG D uge, UI Adjusted is Area unected Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.95" Shallow Concentrated Flow, Woodland Kv= 5.0 fps Shallow Concentrated Flow, Woodland Kv= 5.0 fps Shallow Concentrated Flow, Woodland Kv= 5.0 fps Shallow Concentrated Flow, Woodland Kv= 5.0 fps
(min) 7.5 0.1 0.2	15,072 2,551 1,451 32,793 3,967 71,871 67,869 4,002 4,002 Length (feet) 50 10 39	89 98 95 55 77 71 Slope (ft/ft) 0.0780 0.1000 0.3230	>75% >75% Unac Woo 70 Weig 94.4 5.57 100.1 Velocity (ft/sec) 0.11 1.58 2.84	% Grass co % Grass co onnected pa onnected pa ds, Good, H ds, Good, H ghted Avera 3% Perviou % Impervio 00% Uncon	ver, Good, HSG D avement, HSG B avement, HSG D HSG B HSG D uge, UI Adjusted is Area us Area inected Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.95" Shallow Concentrated Flow, Woodland Kv= 5.0 fps Shallow Concentrated Flow,
(min) 7.5 0.1 0.2 2.8 0.2	15,072 2,551 1,451 32,793 3,967 71,871 67,869 4,002 4,002 Length (feet) 50 10 39 165 10	89 98 98 55 77 71 8 10 (ft/ft) 0.0780 0.1000 0.3230 0.3230 0.0380 0.0200	>75% >75% Uncc Woo 70 Weig 94.4 5.57 100.1 Velocity (ft/sec) 0.11 1.58 2.84 0.97 0.71	% Grass co % Grass co onnected pa onnected pa ds, Good, H ds, Good, H ghted Avera 3% Perviou % Impervio 00% Uncon	ver, Good, HSG D avement, HSG B avement, HSG D HSG B HSG D age, UI Adjusted Is Area us Area us Area innected Description Sheet Flow, Woodland Kv= 5.0 fps Shallow Concentrated Flow, Woodland Kv= 5.0 fps
(min) 7.5 0.1 0.2 2.8	15,072 2,551 1,451 32,793 3,967 71,871 67,869 4,002 4,002 Length (feet) 50 10 39 165 10	89 98 55 77 71 Slope (ft/ft) 0.0780 0.1000 0.3230 0.0380	>759 >759 Uncc Woo 70 Weig 94.4 5.57 100.1 Velocity (ft/sec) 0.11 1.58 2.84 0.97	% Grass co % Grass co onnected pa onnected pa ds, Good, H ds, Good, H ghted Avera 3% Perviou % Impervio 00% Uncon	ver, Good, HSG D avement, HSG B avement, HSG B HSG D HSG D us Area unected Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.95" Shallow Concentrated Flow, Woodland Kv= 5.0 fps Shallow Concentrated Flow,
(min) 7.5 0.1 0.2 2.8 0.2	15,072 2,551 1,451 32,793 3,967 71,871 67,869 4,002 4,002 Length (feet) 50 10 39 165 10	89 98 98 55 77 71 8 10 (ft/ft) 0.0780 0.1000 0.3230 0.3230 0.0380 0.0200	>75% >75% Uncc Woo 70 Weig 94.4 5.57 100.1 Velocity (ft/sec) 0.11 1.58 2.84 0.97 0.71	% Grass co % Grass co onnected pa onnected pa ds, Good, H ds, Good, H ghted Avera 3% Perviou % Impervio 00% Uncon	ver, Good, HSG D avement, HSG B avement, HSG D HSG B HSG D age, UI Adjusted Is Area us Area us Area innected Description Sheet Flow, Woodland Kv= 5.0 fps Shallow Concentrated Flow, Woodland Kv= 5.0 fps

12.4 416 Total

iyaroCAL	® 10.10-	3a s/n 03	590 © 202	0 HydroCAD	Software Solutions LLC Page 3
			Summ	ary for Su	ubcatchment 6S: Pre C.2
Runoff	=	9.44 cfs	s@ 12.2	2 hrs, Volu	me= 0.917 af, Depth= 4.76"
		R-20 meth)-yr Rainf		CS, Weigh	ted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Ar	ea (sf)	CN D	escription		
2	26,537			od, HSG B	
. ,	2,127			od, HSG D	
. (62,399 9,762				ood, HSG B ood, HSG D
1/	9,702 00,825		Veighted A		
	0,825 00,825			ervious Are	a
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
10.8	18	0.0160	0.03	(013)	Sheet Flow,
			0.00		Woods: Dense underbrush n= 0.800 P2= 2.95"
2.5	33	0.0730	0.22		Sheet Flow,
					Grass: Short n= 0.150 P2= 2.95"
0.8	121	0.1440	2.66		Shallow Concentrated Flow,
0.1	10	0.1790	2.12		Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow,
0.1	10	0.1730	2.12		Woodland Kv= 5.0 fps
0.3	41	0.1260	2.48		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
1.5	125	0.0800	1.41		Shallow Concentrated Flow,
0.1	6	0.0170	0.01		Woodland Kv= 5.0 fps
0.1	6	0.0170	0.91		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
0.0	5	0.0210	2.94		Shallow Concentrated Flow,
2.5	•				Paved Kv= 20.3 fps
0.1	5	0.0190	0.96		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
16.2	364	Total			

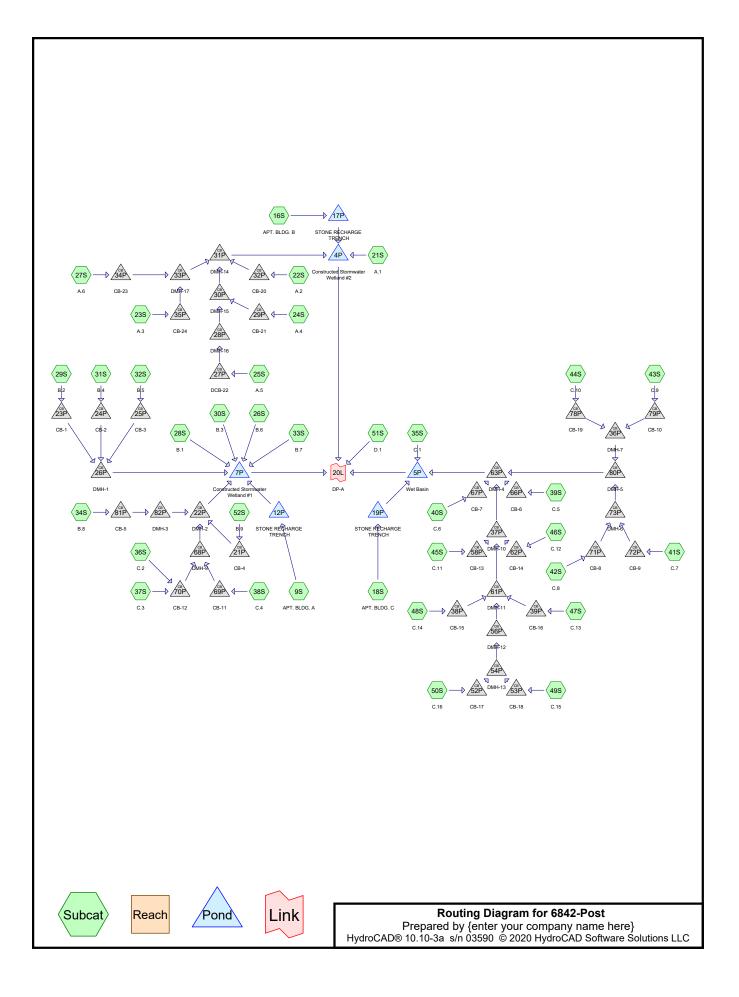
16.2 364 Total

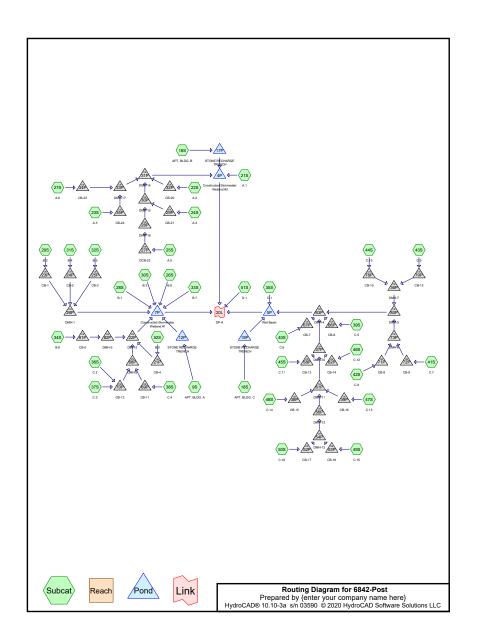
Summary for Subcatchment 7S: Pre C.1

Runoff = 25.38 cfs @ 12.21 hrs, Volume= 2.409 af, Depth= 4.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-yr Rainfall=7.81"

HydroCA				name here 0 HydroCAD) Software Solutions LLC Page
A	rea (sf)	CN	Description		
*	78,314		>75% Gras		
* 1	47,609		>75% Grass Roofs, HSG		iod, HSG B
	2,514 11,441		Paved parki		
	18,629		Woods, Goo		
	258,507		Weighted A		
2	44,552		94.60% Per		
	13,955		5.40% Impe	ervious Area	3
Тс	Length	Slope	e Velocity	Capacity	Description
(min)	(feet)	(ft/ft)		(cfs)	
1.9	10	0.1000	0.09		Sheet Flow,
2.7	40	0.0900	0.25		Woods: Light underbrush n= 0.400 P2= 2.95" Sheet Flow.
2.1	40	0.0900	0.25		Grass: Short n= 0.150 P2= 2.95"
1.1	120	0.0700	1.85		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
0.5	36	0.0650) 1.27		Shallow Concentrated Flow,
1.6	175	0.0650) 1.78		Woodland Kv= 5.0 fps Shallow Concentrated Flow.
1.0	110	0.0000	1.70		Short Grass Pasture Kv= 7.0 fps
0.0	5	0.0190	2.80		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
7.4	368	0.0140	0.83		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
15.2	754	Total			
			•	(
			Summary	for Sub	catchment 8S: Roof Area A
Runoff	=	12.33 c	cfs @ 12.0	9 hrs, Volu	me= 1.039 af, Depth= 7.57"
				CS, Weigh	ted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Type III 2	24-hr 100	J-yr Raii	nfall=7.81"		
A	rea (sf)		Description		
	71,756		Roofs, HSG		
	71,756		100.00% Im	ipervious A	iea
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
6.0					Direct Entry,
		:	Summary	for Subc	atchment 13S: Roof Area B
			,		me= 0.432 af, Depth= 7.57"


342-Pre Type III 24-hr 100-yr Rainfall=7.81"	6842-Pre Type III 24-hr 100-yr Rainfall=7
repared by {enter your company name here} /droCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 35	Prepared by {enter your company name here} HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page
Area (sf) CN Description	Device Routing Invert Outlet Devices
29,814 98 Roofs, HSG B	#1 Primary 212.37' 15.0" Round Culvert
29,814 100.00% Impervious Area	L= 517.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 212.37' / 211.80' S= 0.0011 '/' Cc= 0.900
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	n= 0.013 Concrete pipe, straight & clean, Flow Area= 1.23 sf
6.0 Direct Entry,	Primary OutFlow Max=5.23 cfs @ 13.16 hrs HW=216.98' (Free Discharge) ←1=Culvert (Barrel Controls 5.23 cfs @ 4.26 fps)
Summary for Subcatchment 14S: Pre A.4	Summary for Pond 13P: Existing Infiltration Basin
unoff = 0.94 cfs @ 12.11 hrs, Volume= 0.087 af, Depth= 1.45"	
	Inflow Area = 1.161 ac, 37.95% Impervious, Inflow Depth = 3.77" for 100-yr event Inflow = 4.20 cfs @ 12.09 hrs, Volume= 0.365 af
unoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs	0.365 ar Atten= 85%, Lag= 32.5 min
/pe III 24-hr 100-yr Rainfall=7.81"	Discarded = 0.40 cfs @ 12.64 hrs, Volume= 0.283 af
Area (sf) CN Description	Primary = 0.25 cfs @ 12.64 hrs, Volume= 0.082 af
10,963 68 >75% Grass cover, Good, HSG A	Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
20,431 30 Woods, Good, HSG A	Peak Elev= 213.93' @ 12.64 hrs Surf.Area= 4,689 sf Storage= 5,306 cf
31,39443Weighted Average31,394100.00% Pervious Area	
01,004 100.0070 F CIVICUS / I CU	Plug-Flow detention time= 81.3 min calculated for 0.365 af (100% of inflow) Center-of-Mass det. time= 81.2 min (859.6 - 778.3)
Tc Length Slope Velocity Capacity Description	
(min) (feet) (ft/ft) (ft/sec) (cfs)	Volume Invert Avail.Storage Storage Description
6.0 Direct Entry,	#1 212.50' 11,128 cf Custom Stage Data (Irregular)Listed below (Recalc)
Summary for Pond 12P: Existing Wet Basin	Elevation Surf.Area Perim. Inc.Store Cum.Store Wet.Area
flow Area = 7.392 ac, 55.84% Impervious, Inflow Depth = 6.27" for 100-yr event	212.50 2,793 372.0 0 0 2,793
flow = 30.28 cfs @ 12.27 hrs, Volume= 3.862 af utflow = 5.23 cfs @ 13.16 hrs, Volume= 3.862 af, Atten= 83%, Lag= 53.0 min	213.00 3,407 450.0 1,547 1,547 7,899 214.00 4,790 473.0 4,079 5,626 9,651
imary = 5.23 cfs @ 13.16 hrs, Volume = 3.862 af	215.00 6,246 497.0 5,502 11,128 11,566
puting by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs	Device Routing Invert Outlet Devices
eak Elev= 216.98' @ 13.16 hrs Surf.Area= 52,875 sf Storage= 63,901 cf	#1 Primary 212.83' 15.0'' Round Culvert
	L= 90.0' CPP, projecting, no headwall, Ke= 0.900
ug-Flow detention time= 102.8 min calculated for 3.862 af (100% of inflow) enter-of-Mass det. time= 102.4 min (893.7 - 791.2)	Inlet / Outlet Invert= 212.83' / 210.39' S= 0.0271 '/' Cc= 0.900
(0.93.7 - 791.2)	n= 0.013, Flow Area= 1.23 sf #2 Discarded 212.50' 2.410 in/hr Exfiltration over Surface area
olume Invert Avail.Storage Storage Description	Conductivity to Groundwater Elevation = 210.40'
#1 212.30' 64,778 cf Custom Stage Data (Irregular)Listed below (Recalc)	#3 Device 1 212.63' 3.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low he
levation Surf.Area Perim. Inc.Store Cum.Store Wet.Area	Discarded OutFlow Max=0.40 cfs @ 12.64 hrs HW=213.93' (Free Discharge)
(feet) (sq-ft) (feet) (cubic-feet) (sq-ft)	12=Exfiltration (Controls 0.40 cfs)
212.30 50 75.0 0 0 50	Drimany OutElow May-0.25 of a 12.64 hrs. HW-212.021 (Erea Discharge)
213.00 556 100.0 180 180 403 214.00 5.786 393.0 2.712 2.892 11.901	Primary OutFlow Max=0.25 cfs @ 12.64 hrs HW=213.93' (Free Discharge)
215.00 13,981 580.0 9,587 12,479 26,388	1−3=Orifice/Grate (Orifice Controls 0.25 cfs @ 5.06 fps)
216.00 19,970 757.0 16,887 29,366 45,232	
217.00 53,560 1,442.0 35,412 64,778 165,106	


6842-Pre	Type III 24-hr 10	0-yr Rainfall=7.81"
Prepared by {enter your company name here} HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software So	lutions LLC	Page 37

Summary for Link 11L: DP-A

Inflow Area =	30.660 ac, 30.26% Impervious, Inflow De	epth = 4.99" for 100-yr event
Inflow =	85.26 cfs @ 12.17 hrs, Volume=	12.748 af
Primary =	85.26 cfs @ 12.17 hrs, Volume=	12.748 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

6842-Post Prepared by {enter your company nan <u>HydroCAD® 10.10-3a</u> s/n 03590 © 2020 Hy	
Runoff by SCS	00-72.00 hrs, dt=0.05 hrs, 1441 points TR-20 method, UH=SCS, Weighted-CN Trans method . Pond routing by Stor-Ind method
Subcatchment 9S: APT. BLDG. A	Runoff Area=17,818 sf 100.00% Impervious Runoff Depth=2.77" Tc=6.0 min CN=98 Runoff=1.16 cfs 0.094 af
Subcatchment 16S: APT. BLDG. B	Runoff Area=17,818 sf 100.00% Impervious Runoff Depth=2.77" Tc=6.0 min CN=98 Runoff=1.16 cfs 0.094 af
Subcatchment 18S: APT. BLDG. C	Runoff Area=17,818 sf 100.00% Impervious Runoff Depth=2.77" Tc=6.0 min CN=98 Runoff=1.16 cfs 0.094 af
Subcatchment 21S: A.1	Runoff Area=20,195 sf 5.87% Impervious Runoff Depth=1.13" Tc=10.0 min CN=78 Runoff=0.51 cfs 0.044 af
Subcatchment 22S: A.2	Runoff Area=13,850 sf 100.00% Impervious Runoff Depth=2.77" Tc=6.0 min CN=98 Runoff=0.90 cfs 0.073 af
Subcatchment 23S: A.3	Runoff Area=9,767 sf 100.00% Impervious Runoff Depth=2.77" Tc=6.0 min CN=98 Runoff=0.64 cfs 0.052 af
Subcatchment 24S: A.4	Runoff Area=5,341 sf 100.00% Impervious Runoff Depth=2.77" Tc=6.0 min CN=98 Runoff=0.35 cfs 0.028 af
Subcatchment 25S: A.5	Runoff Area=22,426 sf 100.00% Impervious Runoff Depth=2.77" Tc=6.0 min CN=98 Runoff=1.46 cfs 0.119 af
Subcatchment 26S: B.6	Runoff Area=40,090 sf 22.31% Impervious Runoff Depth=0.86" Tc=6.0 min UI Adjusted CN=73 Runoff=0.84 cfs 0.066 af
Subcatchment 27S: A.6	Runoff Area=12,567 sf 87.12% Impervious Runoff Depth=2.35" Tc=6.0 min CN=94 Runoff=0.75 cfs 0.056 af
Subcatchment 28S: B.1	Runoff Area=30,829 sf 0.88% Impervious Runoff Depth=1.07" Tc=6.0 min CN=77 Runoff=0.84 cfs 0.063 af
Subcatchment 29S: B.2	Runoff Area=13,381 sf 83.76% Impervious Runoff Depth=2.25" Tc=6.0 min CN=93 Runoff=0.77 cfs 0.058 af
Subcatchment 30S: B.3	Runoff Area=17,060 sf 95.72% Impervious Runoff Depth=2.66" Tc=6.0 min CN=97 Runoff=1.09 cfs 0.087 af
Subcatchment 31S: B.4	Runoff Area=17,060 sf 95.72% Impervious Runoff Depth=2.66" Tc=6.0 min CN=97 Runoff=1.09 cfs 0.087 af
Subcatchment 32S: B.5	Runoff Area=24,627 sf 67.38% Impervious Runoff Depth=1.82" Tc=6.0 min CN=88 Runoff=1.18 cfs 0.086 af
Subcatchment 33S: B.7	Runoff Area=290,511 sf 2.55% Impervious Runoff Depth=0.76" Tc=30.0 min CN=71 Runoff=2.99 cfs 0.423 af

2-Post	Type III 24-hr 2-yr Rainfall=3.00"	6842-Post	Type III 24-hr 2-yr Rainfall
ared by {enter your company name here} CAD® 10.10-3a_s/n 03590_© 2020 HydroCAD Software Solutior	s LLC Page 3	Prepared by {enter your company name here HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD	e}) Software Solutions LLC
	sf 88.82% Impervious Runoff Depth=2.45" =6.0 min CN=95 Runoff=0.76 cfs 0.058 af	Subcatchment 52S: B.9 Ru	unoff Area=15,018 sf 80.72% Impervious Runoff Dept Tc=6.0 min CN=92 Runoff=0.84 cfs (
	sf 9.34% Impervious Runoff Depth=1.07" Adjusted CN=77 Runoff=4.39 cfs 0.484 af	Pond 4P: Constructed Stormwater Wetland F	Peak Elev=213.66' Storage=8,397 cf Inflow=4.54 cfs (Outflow=0.42 cfs)
	sf 83.62% Impervious Runoff Depth=2.25" e6.0 min CN=93 Runoff=1.30 cfs 0.097 af	Pond 5P: Wet Basin	Peak Elev=214.56' Storage=5,583 cf Inflow=6.04 cfs (Outflow=4.54 cfs)
	sf 61.75% Impervious Runoff Depth=1.74" e6.0 min CN=87 Runoff=0.57 cfs 0.041 af	Pond 7P: Constructed Stormwater Wetland Pe	eak Elev=215.27' Storage=5,032 cf Inflow=10.28 cfs Outflow=9.14 cfs
	100.00% Impervious Runoff Depth=2.77" =6.0 min CN=98 Runoff=0.30 cfs 0.025 af		Peak Elev=220.30' Storage=1,261 cf Inflow=1.16 cfs (.094 af Primary=0.00 cfs 0.000 af Outflow=0.15 cfs (
	100.00% Impervious Runoff Depth=2.77" =6.0 min CN=98 Runoff=0.38 cfs 0.031 af	Pond 17P: STONE RECHARGE TRENCH	Peak Elev=220.30' Storage=1,261 cf Inflow=1.16 cfs (.094 af Primary=0.00 cfs 0.000 af Outflow=0.15 cfs (
	100.00% Impervious Runoff Depth=2.77" =6.0 min CN=98 Runoff=0.26 cfs 0.021 af	Pond 19P: STONE RECHARGE TRENCH	Peak Elev=220.30' Storage=1,261 cf Inflow=1.16 cfs (.094 af Primary=0.00 cfs 0.000 af Outflow=0.15 cfs (
	i 100.00% Impervious Runoff Depth=2.77" e6.0 min CN=98 Runoff=0.47 cfs 0.038 af	Pond 21P: CB-4	Peak Elev=216.07' Inflow=0.84 cfs (vert n=0.013 L=37.0' S=0.0054 '/' Outflow=0.84 cfs (
	100.00% Impervious Runoff Depth=2.77" =6.0 min CN=98 Runoff=0.50 cfs 0.040 af	Pond 22P: DMH-2	Peak Elev=216.41' Inflow=3.77 cfs (ert n=0.013 L=101.0' S=0.0050 '/ Outflow=3.77 cfs (
	100.00% Impervious Runoff Depth=2.77" =6.0 min CN=98 Runoff=0.57 cfs 0.046 af	Pond 23P: CB-1	Peak Elev=216.13' Inflow=0.77 cfs
	100.00% Impervious Runoff Depth=2.77" =6.0 min CN=98 Runoff=0.35 cfs 0.028 af	Pond 24P: CB-2	vert n=0.013 L=27.0' S=0.0074 '/' Outflow=0.77 cfs (Peak Elev=216.82' Inflow=1.09 cfs (
	f 100.00% Impervious Runoff Depth=2.77" =6.0 min CN=98 Runoff=0.17 cfs 0.014 af	Pond 25P: CB-3	vert n=0.013 L=20.0' S=0.0400 '/' Outflow=1.09 cfs (Peak Elev=217.15' Inflow=1.18 cfs (
	100.00% Impervious Runoff Depth=2.77" =6.0 min CN=98 Runoff=0.39 cfs 0.031 af	Pond 26P: DMH-1	vert n=0.013 L=38.0' S=0.0289 '/' Outflow=1.18 cfs (Peak Elev=216.24' Inflow=3.04 cfs (
	100.00% Impervious Runoff Depth=2.77" =6.0 min CN=98 Runoff=0.13 cfs 0.011 af	18.0" Round Culv	vert n=0.013 L=56.0' S=0.0089 '/' Outflow=3.04 cfs (Peak Elev=216.27' Inflow=1.46 cfs (
atchment 48S: C.14 Runoff Area=1,885 s	100.00% Impervious Runoff Depth=2.77" =6.0 min CN=98 Runoff=0.12 cfs 0.010 af		vert n=0.013 L=50.0' S=0.0060 '/' Outflow=1.46 cfs (Peak Elev=215.86' Inflow=1.46 cfs (
atchment 49S: C.15 Runoff Area=3,487 s	100.00% Impervious Runoff Depth=2.77"	12.0" Round Culve	ert n=0.013 L=160.0' S=0.0050 '/' Outflow=1.46 cfs (
	=6.0 min CN=98 Runoff=0.23 cfs 0.018 af	Pond 29P: CB-21 12.0" Round Culv	Peak Elev=216.53' Inflow=0.35 cfs (vert n=0.013 L=26.0' S=0.0192 '/' Outflow=0.35 cfs (
Тс	=6.0 min CN=98 Runoff=0.23 cfs 0.019 af	Pond 30P: DMH-15 15.0" Round Culve	Peak Elev=214.96' Inflow=1.81 cfs ert n=0.013 L=250.0' S=0.0052 '/' Outflow=1.81 cfs
	sf 0.38% Impervious Runoff Depth=0.37" 20.0 min CN=61 Runoff=1.60 cfs 0.281 af		

6842-Post	Type III 24-hr 2-yr Rainfall=3.00	6842-Post	Type III 24-hr 2-yr Rainfall=3.00"
Prepared by {enter your			ur company name here}
lydroCAD® 10.10-3a s/n 0	03590 © 2020 HydroCAD Software Solutions LLC Page 5	HydroCAD® 10.10-3a s/r	n 03590 © 2020 HydroCAD Software Solutions LLC Page 6
Pond 31P: DMH-14	Peak Elev=214.01' Inflow=4.10 cfs 0.329 at		
	18.0" Round Culvert n=0.013 L=61.0' S=0.0049 '/' Outflow=4.10 cfs 0.329 at	Pond 67P: CB-7	Peak Elev=216.28' Inflow=0.26 cfs 0.021 af
			12.0" Round Culvert n=0.013 L=24.0' S=0.0208 '/' Outflow=0.26 cfs 0.021 af
ond 32P: CB-20	Peak Elev=216.06' Inflow=0.90 cfs 0.073 at		
	12.0" Round Culvert n=0.013 L=12.0' S=0.0167 '/' Outflow=0.90 cfs 0.073 at	Pond 68P: DMH-9	Peak Elev=216.94' Inflow=2.17 cfs 0.163 af
			15.0" Round Culvert n=0.013 L=79.0' S=0.0089 '/' Outflow=2.17 cfs 0.163 af
ond 33P: DMH-17	Peak Elev=216.33' Inflow=1.38 cfs 0.108 at		
	12.0" Round Culvert n=0.013 L=180.0' S=0.0050 '/' Outflow=1.38 cfs 0.108 at	Pond 69P: CB-11	Peak Elev=216.63' Inflow=0.30 cfs 0.025 af
			12.0" Round Culvert n=0.013 L=14.0' S=0.0071 '/' Outflow=0.30 cfs 0.025 af
ond 34P: CB-23	Peak Elev=216.42' Inflow=0.75 cfs 0.056 at		
	12.0" Round Culvert n=0.013 L=28.0' S=0.0071 '/' Outflow=0.75 cfs 0.056 at	Pond 70P: CB-12	Peak Elev=217.14' Inflow=1.87 cfs 0.138 af
			15.0" Round Culvert n=0.013 L=14.0' S=0.0071 '/' Outflow=1.87 cfs 0.138 af
ond 35P: CB-24	Peak Elev=216.36' Inflow=0.64 cfs 0.052 at		
	12.0" Round Culvert n=0.013 L=20.0' S=0.0100 '/' Outflow=0.64 cfs 0.052 at	Pond 71P: CB-8	Peak Elev=215.92' Inflow=0.50 cfs 0.040 af
			12.0" Round Culvert n=0.013 L=32.0' S=0.0062 '/' Outflow=0.50 cfs 0.040 af
ond 36P: DMH-7	Peak Elev=216.56' Inflow=0.92 cfs 0.074 at		
	12.0" Round Culvert n=0.013 L=220.0' S=0.0055 '/' Outflow=0.92 cfs 0.074 at	Pond 72P: CB-9	Peak Elev=215.91' Inflow=0.47 cfs 0.038 af
			12.0" Round Culvert n=0.013 L=37.0' S=0.0054 '/' Outflow=0.47 cfs 0.038 af
ond 37P: DMH-10	Peak Elev=218.71' Inflow=1.26 cfs 0.103 at		
	15.0" Round Culvert n=0.013 L=122.0' S=0.0295 '/' Outflow=1.26 cfs 0.103 at	Pond 73P: DMH-6	Peak Elev=215.78' Inflow=0.97 cfs 0.079 af
			12.0" Round Culvert n=0.013 L=52.0' S=0.0077 '/' Outflow=0.97 cfs 0.079 af
ond 38P: CB-15	Peak Elev=232.39' Inflow=0.12 cfs 0.010 at		
	12.0" Round Culvert n=0.013 L=15.0' S=0.0333 '/' Outflow=0.12 cfs 0.010 at	Pond 78P: CB-19	Peak Elev=216.73' Inflow=0.35 cfs 0.028 af
			12.0" Round Culvert n=0.013 L=45.0' S=0.0067 '/' Outflow=0.35 cfs 0.028 af
nd 39P: CB-16	Peak Elev=232.40' Inflow=0.13 cfs 0.011 at	Devid 70D: 0D 40	
	12.0" Round Culvert n=0.013 L=15.0' S=0.0333 '/' Outflow=0.13 cfs 0.011 at	Pond 79P: CB-10	Peak Elev=216.83' Inflow=0.57 cfs 0.046 af
			12.0" Round Culvert n=0.013 L=17.0' S=0.0176 '/' Outflow=0.57 cfs 0.046 af
nd 52P: CB-17	Peak Elev=247.66' Inflow=0.23 cfs 0.019 at		
	12.0" Round Culvert n=0.013 L=18.0' S=0.0500 '/' Outflow=0.23 cfs 0.019 at	Pond 80P: DMH-5	Peak Elev=215.47' Inflow=1.88 cfs 0.153 af
nd 53P: CB-18	Peak Elev=247.66' Inflow=0.23 cfs 0.018 at		15.0" Round Culvert n=0.013 L=67.0' S=0.0075 // Outflow=1.88 cfs 0.153 af
na 53P: CB-18	12.0" Round Culvert n=0.013 L=18.0' S=0.0500 '/' Outflow=0.23 cfs 0.018 at	Pond 81P: CB-5	Peak Elev=216.53' Inflow=0.76 cfs 0.058 af
	12.0 Round Cuivert n=0.013 L=10.0 3=0.0500 / Outilow=0.25 cis 0.016 al	FOILUOTE. CB-5	12.0" Round Culvert n=0.013 L=31.0' S=0.0065 '/' Outflow=0.76 cfs 0.058 af
ond 54P: DMH-13	Peak Elev=246.78' Inflow=0.46 cfs 0.037 at		12.0 Round Culvert 11=0.013 E=31.0 3=0.00037 Outhow=0.70 Cis 0.030 al
JIU 34F. DIVIN-13	12.0" Round Culvert n=0.013 L=85.0' S=0.0753 '/' Outflow=0.46 cfs 0.037 at	Pond 82P: DMH-3	Peak Elev=216.22' Inflow=0.76 cfs 0.058 af
		FOND 02F. DWH-5	12.0" Round Culvert n=0.013 L=70.0' S=0.0057 '/' Outflow=0.76 cfs 0.058 af
nd 56P: DMH-12	Peak Elev=240.28' Inflow=0.46 cfs 0.037 at		
10 30F. DWH-12	12.0" Round Culvert n=0.013 L=110.0' S=0.0745 '/' Outflow=0.46 cfs 0.037 at	Link 20L: DP-A	Inflow=13.42 cfs 2.596 af
		Ellik 20E. DF-A	Primary=13.42 cfs 2.596 af
nd 58P: CB-13	Peak Elev=219.13' Inflow=0.17 cfs 0.014 at		1 mility 10.42 010 2.000 di
	12.0" Round Culvert n=0.013 L=15.0' S=0.0467 '/' Outflow=0.17 cfs 0.014 at	Total Ru	noff Area = 30.660 ac Runoff Volume = 2.881 af Average Runoff Depth = 1.13'
			75.28% Pervious = 23.079 ac 24.72% Impervious = 7.580 ac
nd 61P: DMH-11	Peak Elev=232.09' Inflow=0.71 cfs 0.058 at		
	12.0" Round Culvert n=0.013 L=198.0' S=0.0677 '/' Outflow=0.71 cfs 0.058 af		
nd 62P: CB-14	Peak Elev=219.25' Inflow=0.39 cfs 0.031 at		
	12.0" Round Culvert n=0.013 L=15.0' S=0.0467 '/' Outflow=0.39 cfs 0.031 at		
nd 63P: DMH-4	Peak Elev=215.19' Inflow=3.79 cfs 0.308 at		
	24.0" Round Culvert n=0.013 L=35.0' S=0.0029 '/' Outflow=3.79 cfs 0.308 at		
nd 66P: CB-6	Peak Elev=216.35' Inflow=0.38 cfs 0.031 at		
	12.0" Round Culvert n=0.013 L=24.0' S=0.0208 '/' Outflow=0.38 cfs 0.031 af		

6842-Post Type III 24-hr 2-yr Rainfall=3.00" Prepared by {enter your company name here}	6842-Post Type III 24-hr 2-yr Rainfall=3.0 Prepared by {enter your company name here}
łydroCAD® 10.10-3a ś/n 03590 © 2020 HydroCAD Software Solutions LLC Page 7	HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page
Summary for Subcatchment 9S: APT. BLDG. A	Summary for Subcatchment 21S: A.1
Runoff = 1.16 cfs @ 12.09 hrs, Volume= 0.094 af, Depth= 2.77"	Runoff = 0.51 cfs @ 12.15 hrs, Volume= 0.044 af, Depth= 1.13"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs ype III 24-hr 2-yr Rainfall=3.00"	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-yr Rainfall=3.00"
Area (sf) CN Description	Area (sf) CN Description
17,818 98 Roofs, HSG A	* 18,718 77 >75% Grass cover, Good, HSG A
17,818 100.00% Impervious Area	* 291 43 Woods, Good, HSG A 95 98 Unconnected pavement, HSG A
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	1,091 98 Roofs, HSG A 20,195 78 Weighted Average
6.0 Direct Entry,	19,009 94.13% Pervious Area 1,186 5.87% Impervious Area
Summary for Subcatchment 16S: APT. BLDG. B	95 8.01% Unconnected
unoff = 1.16 cfs @ 12.09 hrs, Volume= 0.094 af, Depth= 2.77"	Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs ype III 24-hr 2-yr Rainfall=3.00"	10.0 Direct Entry,
	Summary for Subcatchment 22S: A.2
Area (sf) CN Description 17.818 98 Roofs, HSG A	Runoff = 0.90 cfs @ 12.09 hrs, Volume= 0.073 af, Depth= 2.77"
17,818 100.00% Impervious Area	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	Type III 24-hr 2-yr Rainfall=3.00"
6.0 Direct Entry,	Area (sf) CN Description
Summary for Subcatchment 18S: APT. BLDG. C	12,935 98 Paved parking, HSG A 915 98 Roofs, HSG A
Runoff = 1.16 cfs @ 12.09 hrs, Volume= 0.094 af, Depth= 2.77"	13,85098Weighted Average13,850100.00% Impervious Area
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs	Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
ype III 24-hr 2-yr Rainfall=3.00"	6.0 Direct Entry,
Area (sf) CN Description 17,818 98 Roofs, HSG A	Summary for Subcatchment 23S: A.3
17,818 100.00% Impervious Area	Runoff = 0.64 cfs @ 12.09 hrs, Volume= 0.052 af, Depth= 2.77"
Tc Length Slope Velocity Capacity Description	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
(min) (fet) (ft/sec) (cfs) 6.0 Direct Entry,	Type III 24-hr 2-yr Rainfall=3.00"
	Area (sf) CN Description
	9.767 98 Paved parking, HSG A

HydroCAD® 1	0.10-3a ś/n 0	3590 © 202	0 HydroCAE	D Software Solutions LLC Page 9
Tc Len (min) (fe	igth Slope eet) (ft/ft)		Capacity (cfs)	
6.0				Direct Entry,
		Sumr	nary for	Subcatchment 24S: A.4
Runoff =	0.35 c	fs @ 12.0	9 hrs, Volu	ume= 0.028 af, Depth= 2.77"
Runoff by SC Type III 24-hr			CS, Weigh	nted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Area (Description		
2 5,1		Paved park Roofs, HSC		Ą
5,3 5,3		Weighted A 100.00% Im		Area
Tc Len (min) (fe	igth Slope eet) (ft/ft)		Capacity (cfs)	Description
6.0				Direct Entry,
		Sum		
		Sum	nary for S	Subcatchment 25S: A.5
Runoff =	1.46 c	fs @ 12.0	•	
Runoff by SC	S TR-20 me	fs @ 12.0 thod, UH=S	9 hrs, Volu	
Runoff by SC	S TR-20 me 2-yr Rainfa	fs @ 12.0 thod, UH=S	9 hrs, Volu SCS, Weigh	ume= 0.119 af, Depth= 2.77"
Runoff by SC Type III 24-hr <u>Area (</u> 22,4	S TR-20 me 2-yr Rainfa sf) CN 26 98	fs @ 12.0 thod, UH=S II=3.00" Description Paved park	9 hrs, Volu CS, Weigh	ume= 0.119 af, Depth= 2.77" nted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Runoff by SC Type III 24-hr Area (S TR-20 me 2-yr Rainfa sf) CN 26 98	fs @ 12.0 thod, UH=S II=3.00" <u>Description</u> <u>Paved park</u> 100.00% Im	9 hrs, Volu CS, Weigh ing, HSG A npervious A	ume= 0.119 af, Depth= 2.77" nted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Area
Runoff by SC Type III 24-hr <u>Area (</u> 22,4 22,4 Tc Len	S TR-20 me 2-yr Rainfa sf) CN 26 98 26	fs @ 12.0 thod, UH=S II=3.00" <u>Description</u> <u>Paved park</u> 100.00% Im Velocity	9 hrs, Volu CS, Weigh ing, HSG A npervious A	ume= 0.119 af, Depth= 2.77" hted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs A Area Description
Runoff by SC Type III 24-hr <u>Area (</u> 22,4 22,4 Tc Len	S TR-20 me [;] 2-yr Rainfa <u>sf) CN</u> 26 98 26 gth Slope	fs @ 12.0 thod, UH=S II=3.00" <u>Description</u> <u>Paved park</u> 100.00% Im Velocity	9 hrs, Volu SCS, Weigh ing, HSG A apervious A Capacity	ume= 0.119 af, Depth= 2.77" hted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs A Area Description
Runoff by SC Type III 24-hr <u>Area (</u> 22,4 22,4 Tc Len (min) (fe	S TR-20 me [;] 2-yr Rainfa <u>sf) CN</u> 26 98 26 gth Slope	fs @ 12.0 thod, UH=S ll=3.00" <u>Description</u> <u>Paved park</u> 100.00% Im Velocity (ft/sec)	9 hrs, Volu iCS, Weigh ing, HSG A pervious A Capacity (cfs)	ume= 0.119 af, Depth= 2.77" hted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs A Area Description
Runoff by SC Type III 24-hr <u>Area (</u> 22,4 22,4 Tc Len (min) (fe	S TR-20 me [:] 2-yr Rainfa sf) <u>CN</u> 26 98 26 gth Slope set) (ft/ft)	fs @ 12.0 thod, UH=S ll=3.00" <u>Description</u> <u>Paved park</u> 100.00% Im Velocity (ft/sec)	9 hrs, Volu GCS, Weigh ing, HSG A ppervious A Capacity (cfs) mary for S	ume= 0.119 af, Depth= 2.77" hted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Area Description Direct Entry, Subcatchment 26S: B.6

Inoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs pe III 24-hr 2-yr Rainfall=3.00" Area (sf) CN Description 8,883 98 Paved parking, HSG A 1,619 68 >75% Grass cover, Good, HSG A 948 98 Unconnected pavement, HSG A 1,17 98 Roofs, HSG A 12,567 94 Weighted Average 1,619 12.88% Pervious Area 10,948 87.12% Impervious Area 948 8.66% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 28S: B.1	6842-Post	Type III 24-hr 2-yr Rainfall=3.
31,146 68 >75% Grass cover, Good, HSG A 3,467 98 Unconnected pavement, HSG A 40,090 75 73 Weighted Average, UI Adjusted 31,146 68 77.69% Pervious Area 8,944 22.31% Impervious Area 8,944 22.31% Impervious Area 3,467 38.76% Unconnected Tc Length Slope (feet) (ft/ft) (ft/sec) 6.0 Direct Entry, Summary for Subcatchment 27S: A.6 noff = noff = 0.75 cfs @ 12.09 hrs, Volume= 0.056 af, Depth= 0.05 CS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs pe III 24-hr 2-yr Rainfall=3.00" Area (sf) CN Description 8.883 98 Paved parking, HSG A 1.619 88.75% Grass cover, Good, HSG A 1,619 82 75% Grass cover, Good, HSG A 1.117 98 Roofs, HSG A 1,619 12.86% Pervious Area 10.948 87.12% Impervious Area		
31,146 68 >75% Grass cover, Good, HSG A 3,467 98 Unconnected pavement, HSG A 40,090 75 73 Weighted Average, UI Adjusted 31,146 68 77.69% Pervious Area 8,944 22.31% Impervious Area 8,944 22.31% Impervious Area 3,467 38.76% Unconnected Tc Length Slope (feet) (ft/ft) (ft/sec) 6.0 Direct Entry, Summary for Subcatchment 27S: A.6 noff = noff = 0.75 cfs @ 12.09 hrs, Volume= 0.056 af, Depth= 0.05 CS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs pe III 24-hr 2-yr Rainfall=3.00" Area (sf) CN Description 8.883 98 Paved parking, HSG A 1.619 88.75% Grass cover, Good, HSG A 1,619 82 75% Grass cover, Good, HSG A 1.117 98 Roofs, HSG A 1,619 12.86% Pervious Area 10.948 87.12% Impervious Area	Area (of)	
3.467 98 Unconnected pavement, HSG A 5,477 98 Roofs, HSG A 40,090 75 73 Weighted Average, UI Adjusted 31,146 77.69% Pervious Area 8,944 22.31% Impervious Area 8,944 22.31% Impervious Area 38.76% Unconnected 75 Tc Length Slope Velocity Capacity Description (min) (ftet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 27S: A.6 noff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs per III 24-hr 948 98 Paved parking, HSG A 1.619 4.834 1,619 68 >75% Grass cover, Good, HSG A 4.117 98 Roofs, HSG A 1,619 12.86% Pervious Area 4.66% Unconnected 1.619 12.88% Pervious Area 10,948 87.12% Impervious Area 948 8.66% Unconnected 1.619 10,948 87.12% Impervious Area 948 8.66% Unconnected 1.619		
5,477 98 Roofs, HSG A 40,090 75 73 Weighted Average, UI Adjusted 31,146 77.69% Pervious Area 8,944 22.31% Impervious Area 8,944 22.31% Impervious Area 98 3,467 38.76% Unconnected 77.69% Outconnected Tc Length Slope Velocity Capacity Description (min) (fett) (ft/ft) (ft/scc) (cfs) 6.0 Summary for Subcatchment 27S: A.6 noff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs pell l24-hr 2-yr Rainfall=3.00" 4 Area (sf) CN Description 8,883 98 Paved parking, HSG A 1.117 1,117 98 Roofs, HSG A 1.117 12,567 94 Weighted Average 1.619 12.86% 10,948 87.12% Impervious Area 10.948 87.12% Impervious Area 948 8.66% Unconnected Direct Entry, 5 0.06		
31,146 77. šó% Pervious Área 8,944 22.31% Impervious Area 3,467 38.76% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/seec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 27S: A.6 noff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs pell 24-hr 2-yr Rainfall=3.00" Area (sf) CN Description 8.883 98 Paved parking, HSG A 1.619 68 >75% Grass cover, Good, HSG A 1.619 68 >75% Grass cover, Good, HSG A 1.117 98 Roofs, HSG A 12.567 94 Weighted Average 1.619 12.86% Pervious Area 10.948 87.12% Impervious Area 10.948 87.12% Impervious Area 10.948 87.12% Impervious Area 10.948 87.12% Impervious Area 10.948 87.12% Impervious Area 0.063 af, Depth= 1.07" 10.948 87.12% Impervious Area 10.944 80.01 Direct Entry, Summary for Subcatchment 28S: B.1 10.		
8,944 22.31% Impervious Area 3,467 38.76% Unconnected Tc Length Slope Velocity Capacity Description (fiet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 27S: A.6 noff = 0.75 cfs @ 12.09 hrs, Volume= 0.056 af, Depth= 2.35" noff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs pell 24-hr 2-yr Rainfall=3.00" Area (sf) CN Description 8,883 98 Paved parking, HSG A 1,619 68 >75% Grass cover, Good, HSG A 1,117 98 Roofs, HSG A 12,567 94 Weighted Average 1,619 12,88% Pervious Area 948 8.66% Unconnected Tc Length Slope 948 8.66% Unconnected Tc Length Slope 948 8.66% Unconnected Tc Length Slope 948 8.66% Unconnected Tc Length Chrap		
3,467 38.76% Unconnected Tc Length (min) (feet) Slope Velocity Capacity Description (ft/ft) Direct Entry, 6.0 Direct Entry, Summary for Subcatchment 27S: A.6 moff = 0.75 cfs @ 12.09 hrs, Volume= 0.056 af, Depth= 2.35" noff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs pe III 24-hr 2-yr Rainfall=3.00" Area (sf) CN Area (sf) CN Description 8,883 98 Paved parking, HSG A 1,619 68 >75% Grass cover, Good, HSG A 1,117 98 Roofs, HSG A 1,619 12.86% Pervious Area 1,619 12.86% Unconnected pavement, HSG A 1,117 1,619 12.88% Pervious Area 948 8.66% Unconnected 10,948 87.12% Impervious Area 948 8.66% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 28S: B.1 Noff noff = 0.84 cfs @ 12.10 hrs, Volume= 0.063 af, Depth= 1.07" noff by SCS TR-20 meth		
Tc Length Slope Velocity Capacity Description (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 27S: A.6 noff = 0.75 cfs @ 12.09 hrs, Volume= 0.056 af, Depth= 2.35" noff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs pell 24-hr Pell 24-hr 2-yr Rainfall=3.00" Area (sf) CN Area (sf) CN Description 8.883 98 8,883 98 Paved parking, HSG A 1.619 1.863 1,619 68 >75% Grass cover, Good, HSG A 1.619 1.288% Pervious Area 1,117 98 Roofs, HSG A 1.619 12.86% Unconnected 10,948 87.12% Impervious Area 948 8.66% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 28S: B.1 1.07" noff = 0.84 cfs @ 12.10 hrs, Volume=		
(min) (ftvit) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 27S: A.6 noff = 0.75 cfs @ 12.09 hrs, Volume= 0.056 af, Depth= 2.35" noff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs pe III 24-hr 2.97 Rainfall=3.00" Area (sf) CN Description 8.883 98 Paved parking, HSG A 1,619 68 >75% Grass cover, Good, HSG A 948 98 Unconnected pavement, HSG A 1,117 98 Roofs, HSG A 12.88% Pervious Area 10.948 87.12% Impervious Area 10,948 87.12% Impervious Area 948 8.66% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 28S: B.1 Inoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs pe III 24-hr endit by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs pe III 24-hr <	-,	
6.0 Direct Entry, Summary for Subcatchment 27S: A.6 noff = 0.75 cfs @ 12.09 hrs, Volume= 0.056 af, Depth= 2.35" noff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs pe 11.01 pe III 24-hr 2-yr Rainfall=3.00" Area (sf) CN Description 8,883 98 Paved parking, HSG A 1.619 68 1,619 68 >75% Grass cover, Good, HSG A 1.117 98 10,648 98 Unconnected pavement, HSG A 1.117 98 Roofs, HSG A 12,567 94 Weighted Average 1.619 12.88% Pervious Area 948 8.66% Unconnected 10,948 87.12% Impervious Area 948 8.66% Unconnected Tote Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Slope Velocity Capacity Description 0.063 af, Depth= 1.07" noff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs pe III 24-hr 2-yr Rainfall=3.0	5	
Summary for Subcatchment 27S: A.6 noff = 0.75 cfs @ 12.09 hrs, Volume= 0.056 af, Depth= 2.35" noff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs pe III 24-hr 2-yr Rainfall=3.00" Area (sf) CN Description 8,883 98 Paved parking, HSG A 10.948 375% Grass cover, Good, HSG A 948 98 Unconnected pavement, HSG A 11.17 98 12,567 94 Weighted Average 1.619 12.88% Pervious Area 10,948 87.12% Impervious Area 948 8.66% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 0.063 af, Depth= 1.07" noff = 0.84 cfs @ 12.10 hrs, Volume= 0.063 af, Depth= 1.07" noff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs pe III 24-hr 2-yr Rainfall=3.00" Area (sf) CN Description Area (sf) CN Description 30,559 77 >75% Grass cover, Good, HSG A 270 98 Unconnect	/	
noff = $0.75 \text{ cfs} @ 12.09 \text{ hrs}$, Volume= 0.056 af , Depth= 2.35 " noff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-72.00 \text{ hrs}$, dt= 0.05 hrs pe III 24-hr 2-yr Rainfall= 3.00 " Area (sf) CN Description 8,883 98 Paved parking, HSG A 1,619 68 >75% Grass cover, Good, HSG A 948 98 Unconnected pavement, HSG A 1,117 98 Roofs, HSG A 12,567 94 Weighted Average 1,619 12.88% Pervious Area 948 8.66% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 28S: B.1 noff = $0.84 \text{ cfs} @ 12.10 \text{ hrs}$, Volume= 0.063 af , Depth= 1.07 " noff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-72.00 \text{ hrs}$, dt= 0.05 hrs pe III 24-hr 2-yr Rainfall= 3.00 " Area (sf) CN Description $\overline{30,559}$ 77 >75% Grass cover, Good, HSG A 270 98 Unconnected pavement, HSG A 30.829 77 Weighted Average 30.829 77 Weighted Average 30.559 77 >75% Grass cover, Good, HSG A 270 98 Unconnected pavement, HSG A 270 98 Unconnected pavement, HSG A 30.829 77 Weighted Average 30.559 77 >75% Grass cover, Good, HSG A 270 98 Unconnected pavement, HSG A	0.0	Direct Entry,
noff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs pe III 24-hr 2-yr Rainfall=3.00" Area (sf) CN Description 8,883 98 Paved parking, HSG A 1,619 68 >75% Grass cover, Good, HSG A 1,117 98 Roofs, HSG A 12,567 94 Weighted Average 1,619 12.88% Pervious Area 10,948 87.12% Impervious Area 948 8.66% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 28S: B.1 noff = 0.84 cfs @ 12.10 hrs, Volume= 0.063 af, Depth= 1.07" noff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs pe III 24-hr 2-yr Rainfall=3.00" Area (sf) CN Description 30,559 77 >75% Grass cover, Good, HSG A 270 98 Unconnected pavement, HSG A 30,829 77 Weighted Average 30,559 99.12% Pervious Area 270 0.88% Impervious Area		Summary for Subcatchment 27S: A.6
Area (sf) CN Description 8,883 98 Paved parking, HSG A 1,619 68 >75% Grass cover, Good, HSG A 948 98 Unconnected pavement, HSG A 1,117 98 Roofs, HSG A 12,567 94 Weighted Average 1,619 12.88% Pervious Area 10,948 87.12% Impervious Area 948 8.66% Unconnected Tc Length Slope Velocity Capacity 0.48 87.12% Impervious Area 948 8.66% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/scc) 6.0 Direct Entry, Summary for Subcatchment 28S: B.1 Inoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs pe III 24-hr 2-yr Rainfall=3.00" Area (sf) CN Description 30,559 77 30,559 77 >75% Grass cover, Good, HSG A 270 98<	Runoff =	0.75 cfs @ 12.09 hrs, Volume= 0.056 af, Depth= 2.35"
Area (sf) CN Description 8,883 98 Paved parking, HSG A 1,619 68 >75% Grass cover, Good, HSG A 948 98 Unconnected pavement, HSG A 12,567 94 Weighted Average 16,19 12.88% Pervious Area 10,948 87.12% Impervious Area 948 8.66% Unconnected Tc Length Slope Velocity 6.0 Direct Entry, Summary for Subcatchment 28S: B.1 noff = 0.84 cfs @ 12.10 hrs, Volume= 0.063 af, Depth= 1.07" noff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.0559 77 Pave (sf) CN Description 30,559 77 30,559 77 30,559 77 30,559 99.12% Pervious Area 30,559 99.12% Pervious Area 30,559 99.12% Pervious Area 30,559 99.12% Pervious Area 270 0.88% Impervious Area		
8,883 98 Paved parking, HSG A 1,619 68 >75% Grass cover, Good, HSG A 948 98 Unconnected pavement, HSG A 1,117 98 Roofs, HSG A 12,567 94 Weighted Average 1,619 12.88% Pervious Area 10,948 87.12% Impervious Area 948 8.66% Unconnected Tc Length Slope Velocity Capacity Description (ft/ft) (ft/ft) (ft/scc) (cfs) 6.0 Direct Entry, Summary for Subcatchment 28S: B.1 Inoff = 0.84 cfs @ 12.10 hrs, Volume= 0.063 af, Depth= 1.07" Inoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs pel III 24-hr 2-yr Rainfall=3.00" Area (sf) CN Description 30,559 77 >75% Grass cover, Good, HSG A 270 98 Unconnected pavement, HSG A 30,829 77 Weighted Average 30,559 99.12% Pervious Area 270 0.88% Impervious Area 270 0.88% Impervious Area	ype iii 24-iii 2-	yi Kamai – 5.00
1,619 68 >75% Grass cover, Good, HSG A 948 98 Unconnected pavement, HSG A 1,117 98 Roofs, HSG A 12,567 94 Weighted Average 1,619 12.88% Pervious Area 10,948 87.12% Impervious Area 948 8.66% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (feet) (ft/ft) (ft/ft) (ft/scc) 6.0 Direct Entry, Summary for Subcatchment 28S: B.1 Inoff = 0.84 cfs @ 12.10 hrs, Volume= 0.063 af, Depth= 10.94 x cfs @ 12.10 hrs, Volume= 0.063 af, Depth= Inoff = 0.84 cfs @ 12.10 hrs, Volume= 0.063 af, Depth= Inoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs pel III 24-hr 2-yr Rainfall=3.00"		
948 98 Unconnected pavement, HSG A 1,117 98 Roofs, HSG A 12,567 94 Weighted Average 1,619 12.88% Pervious Area 10,948 87.12% Impervious Area 948 8.66% Unconnected Tc Length Slope Velocity 6.0 Direct Entry, Summary for Subcatchment 28S: B.1 inoff = 0.84 cfs @ 12.10 hrs, Volume= 0.063 af, Depth= 1.07" noff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs pe III 24-hr 2-yr Rainfall=3.00" Area (sf) CN Description 30,559 77 30,559 77 98 Unconnected pavement, HSG A 30,559 77 30,559 77 30,559 99.12% Pervious Area 30,559 91.2% Pervious Area 30,559 92.12% Pervious Area		
1,117 98 Roofs, HSG A 12,567 94 Weighted Average 1,619 12.88% Pervious Area 10,948 87.12% Impervious Area 948 8.66% Unconnected Tc Length Slope 6.0 Direct Entry, Summary for Subcatchment 28S: B.1 noff = 0.84 cfs @ 12.10 hrs, Volume= 0.063 af, Depth= 1.07" noff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs pe III 24-hr 2-yr Rainfall=3.00" Area (sf) CN Description 30,559 77 >75% Grass cover, Good, HSG A 270 98 Unconnected pavement, HSG A 30,559 99.12% Pervious Area 30,559 99.12% Pervious Area 270 0.88% Impervious Area 270 0.88% Impervious Area <td></td> <td></td>		
1,619 12.88% Pervious Area 10,948 87.12% Impervious Area 948 8.66% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 28S: B.1 inoff = 0.84 cfs @ 12.10 hrs, Volume= 0.063 af, Depth= 1.07" inoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs pe III 24-hr 2-yr Rainfall=3.00"		
10,948 87.12% Impervious Area 948 8.66% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 28S: B.1 noff = 0.84 cfs @ 12.10 hrs, Volume= 0.063 af, Depth= 1.07" noff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs pe III 24-hr 2-yr Rainfall=3.00" Area (sf) CN Description 30,559 77 >75% Grass cover, Good, HSG A 270 98 Unconnected pavement, HSG A 30,559 77 Weighted Average 30,559 99.12% Pervious Area 30,559 99.12% Pervious Area 270 0.88% Impervious Area 270 0.88% Impervious Area		
948 8.66% Unconnected Tc Length (feet) Slope Velocity Capacity Description (ft/ft) (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 28S: B.1 noff = 0.84 cfs @ 12.10 hrs, Volume= 0.063 af, Depth= 1.07" noff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs pe III 24-hr 2-yr Rainfall=3.00" Area (sf) CN Description 30,559 77 >75% Grass cover, Good, HSG A 270 98 Unconnected pavement, HSG A 30,559 77 Weighted Average 30,559 99.12% Pervious Area 270 0.88% Impervious Area 270 0.88% Impervious Area		
Tc Length (feet) Slope Velocity (ft/sec) Capacity (cfs) Description 6.0 Direct Entry, Summary for Subcatchment 28S: B.1 noff = 0.84 cfs @ 12.10 hrs, Volume= 0.063 af, Depth= 1.07" noff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs pe III 24-hr 2-yr Rainfall=3.00" Area (sf) CN Area (sf) CN Description 30,559 77 >75% Grass cover, Good, HSG A 270 98 Unconnected pavement, HSG A 30,559 77 Veighted Average 30,559 99.12% Pervious Area 270 270 0.88% Impervious Area 270 0.88% Impervious Area		
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 28S: B.1 noff = 0.84 cfs @ 12.10 hrs, Volume= 0.063 af, Depth= 1.07" noff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs pe III 24-hr 2-yr Rainfall=3.00" Area (sf) CN Description 30,559 77 >75% Grass cover, Good, HSG A 270 98 Unconnected pavement, HSG A 30,559 77 Veighted Average 30,559 99.12% Pervious Area 270 0.88% Impervious Area 270 0.88% Impervious Area	940	8.00% Chiconnected
Direct Entry, Bummary for Subcatchment 28S: B.1 noff = 0.84 cfs @ 12.10 hrs, Volume= 0.063 af, Depth= 1.07" noff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs pe III 24-hr 2-yr Rainfall=3.00" Area (sf) CN Description 30,559 77 >75% Grass cover, Good, HSG A 270 98 Unconnected pavement, HSG A 30,559 77 Weighted Average 30,559 99.12% Pervious Area 270 0.88% Impervious Area		
Summary for Subcatchment 28S: B.1 anoff = 0.84 cfs @ 12.10 hrs, Volume= 0.063 af, Depth= 1.07" anoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs pe III 24-hr 2-yr Rainfall=3.00" Area (sf) CN Description 30,559 77 >75% Grass cover, Good, HSG A 270 98 Unconnected pavement, HSG A 30,829 77 Weighted Average 30,559 99.12% Pervious Area 270 0.88% Impervious Area		
inoff = 0.84 cfs @ 12.10 hrs, Volume= 0.063 af, Depth= 1.07" inoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs pe III 24-hr 2-yr Rainfall=3.00" Area (sf) CN Description 30,559 77 >75% Grass cover, Good, HSG A 270 98 Unconnected pavement, HSG A 30,829 77 Weighted Average 30,559 99.12% Pervious Area 270 0.88% Impervious Area	6.0	Direct Entry,
Interview of the colspan= 0.00-72.00 hrs, dt= 0.05 hrs inoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs pe III 24-hr 2-yr Rainfall=3.00" Area (sf) CN Description 30,559 77 >75% Grass cover, Good, HSG A 270 98 Unconnected pavement, HSG A 30,829 77 Weighted Average 30,559 99.12% Pervious Area 270 0.88% Impervious Area		Summary for Subcatchment 28S: B.1
pe III 24-hr 2-yr Rainfall=3.00" Area (sf) CN Description 30,559 77 >75% Grass cover, Good, HSG A 270 98 Unconnected pavement, HSG A 30,829 77 Weighted Average 30,559 99.12% Pervious Area 270 0.88% Impervious Area	Runoff =	0.84 cfs @ 12.10 hrs, Volume= 0.063 af, Depth= 1.07"
Area (sf) CN Description 30,559 77 >75% Grass cover, Good, HSG A 270 98 Unconnected pavement, HSG A 30,829 77 Weighted Average 30,559 99.12% Pervious Area 270 0.88% Impervious Area		
30,559 77 >75% Grass cover, Good, HSG A 270 98 Unconnected pavement, HSG A 30,829 77 Weighted Average 30,559 99.12% Pervious Area 270 0.88% Impervious Area		•
27098Unconnected pavement, HSG A30,82977Weighted Average30,55999.12% Pervious Area2700.88% Impervious Area		
30,829 77 Weighted Average 30,559 99.12% Pervious Area 270 0.88% Impervious Area		
30,559 99.12% Pervious Area 270 0.88% Impervious Area		
	30,559	99.12% Pervious Area
270 100.00% Unconnected		
	270	100.00% Unconnected

		ur company 03590 © 2020			utions LLC		Page 11
Tc Le (min) (ength Slop feet) (ft/i	e Velocity ft) (ft/sec)	Capacity (cfs)	Description			
6.0				Direct Entr	у,		
		Sumn	nary for S	Subcatchm	ent 29S: B.2		
Runoff =	= 0.77	cfs @ 12.09	9 hrs, Volu	ume=	0.058 af, Depth	ר= 2.25"	
Runoff by S0 Type III 24-h			CS, Weigh	ited-CN, Time	Span= 0.00-72	.00 hrs, dt= 0.05 hrs	
Area		Description					
	173 68 997 98	>75% Grass Unconnecte					
9,2	211 98	Paved parki	ing, HSG A				
	381 93 173	Weighted A 16.24% Per					
11,	208	83.76% Imp	ervious Ar				
1,9	997	17.82% Und	connected				
Tc Le (min) (ength Slop feet) (ft/	be Velocity ft) (ft/sec)	Capacity (cfs)	Description			
6.0							
				Direct Entr	у,		
		Sumr	nary for s				
			•	Subcatchm	ent 30S: B.3		
Runoff =	= 1.09	Sum r cfs @ 12.09	•	Subcatchm		n= 2.66"	
Runoff by S(CS TR-20 m	cfs @ 12.09 ethod, UH=S	9 hrs, Volu	Subcatchm ume=	ent 30S: B.3 0.087 af, Deptł	n= 2.66" .00 hrs, dt= 0.05 hrs	
Runoff by S0 Type III 24-h	CS TR-20 m nr 2-yr Raint	cfs @ 12.09 ethod, UH=S fall=3.00"	9 hrs, Volu CS, Weigh	Subcatchm ume=	ent 30S: B.3 0.087 af, Deptł		
Runoff by S0 Type III 24-h Area	CS TR-20 m nr 2-yr Raint (sf) CN 731 68	cfs @ 12.09 ethod, UH=S fall=3.00" Description >75% Grass	9 hrs, Volu CS, Weigh	Subcatchm ume= nted-CN, Time	ent 30S: B.3 0.087 af, Deptł		
Runoff by S(Type III 24-h <u>Area</u>	CS TR-20 m nr 2-yr Raint (sf) CN 731 68 575 98	cfs @ 12.09 ethod, UH=S fall=3.00" <u>Description</u> >75% Grass Unconnecte	9 hrs, Volu CS, Weigh s cover, Go	Subcatchm ume= nted-CN, Time pod, HSG A nt, HSG A	ent 30S: B.3 0.087 af, Deptl		
Runoff by S0 Type III 24-h Area * 2, 13,	CS TR-20 m nr 2-yr Raint (sf) CN 731 68	cfs @ 12.09 ethod, UH=S fall=3.00" Description >75% Grass	9 hrs, Volu CS, Weigh s cover, Go d pavemen	Subcatchm ume= nted-CN, Time pod, HSG A nt, HSG A	ent 30S: B.3 0.087 af, Deptl		
Runoff by S0 Type III 24-h *	CS TR-20 m nr 2-yr Raini (sf) CN 731 68 575 98 754 98 060 97 731	cfs @ 12.09 ethod, UH=S fall=3.00" >75% Gras: Unconnecte Paved parkit Weighted A 4.28% Perv	9 hrs, Volu CS, Weigh s cover, Go d pavemen ing, HSG A verage ious Area	Subcatchm ume= uted-CN, Time pood, HSG A nt, HSG A	ent 30S: B.3 0.087 af, Deptl		
Runoff by S(Type III 24-h * 2,, 13, 17,, 16,	CS TR-20 m nr 2-yr Raint (sf) CN 731 68 575 98 754 98 060 97	cfs @ 12.09 ethod, UH=S fall=3.00" <u>Description</u> >75% Grass Unconnecte Paved parki Weighted A	9 hrs, Volu CS, Weigh s cover, Go d pavemen ing, HSG A verage ious Area servious Ar	Subcatchm ume= uted-CN, Time pood, HSG A nt, HSG A	ent 30S: B.3 0.087 af, Deptl		
Runoff by S0 Type III 24-h * 2,, 13, 17,(16, 2,	CS TR-20 m r 2-yr Raint (sf) CN 731 68 575 98 754 98 060 97 731 329 575	cfs @ 12.09 ethod, UH=S fall=3.00" Description >75% Grass Unconnecte Paved parki Weighted A 4.28% Perv 95.72% Imp 15.77% Uno	9 hrs, Volu CS, Weigh s cover, Gc d pavemen ing, HSG A verage ious Area bervious Ar connected	Subcatchm ume= ted-CN, Time pod, HSG A nt, HSG A A ea	eent 30S: B.3 0.087 af, Deptt Span= 0.00-72		
Runoff by SC Type III 24-h * 2, 13, 17, 16, 2, Tc Le	CS TR-20 m r 2-yr Raint (sf) CN 731 68 575 98 754 98 060 97 731 329 575	cfs @ 12.09 ethod, UH=S fall=3.00" Description >75% Grass Unconnecte Paved parki Weighted A 4.28% Perv 95.72% Imp 15.77% Unco	9 hrs, Volu CS, Weigh s cover, Go d pavemen ing, HSG A verage ious Area servious Ar	Subcatchm ume= ted-CN, Time pod, HSG A nt, HSG A A ea	eent 30S: B.3 0.087 af, Deptt Span= 0.00-72		
Runoff by SC Type III 24-h * 2, 13, 17, 16, 2, Tc Le	CS TR-20 m nr 2-yr Raini 731 68 575 98 754 98 060 97 731 329 575 ength Slop	cfs @ 12.09 ethod, UH=S fall=3.00" Description >75% Grass Unconnecte Paved parki Weighted A 4.28% Perv 95.72% Imp 15.77% Unco	9 hrs, Volu CS, Weigh s cover, Go d pavemen ing, HSG A verage ious Area pervious Area connected Capacity	Subcatchm ume= ted-CN, Time pod, HSG A nt, HSG A A ea	eent 30S: B.3 0.087 af, Deptt Span= 0.00-72		
Runoff by S(Type III 24-h * 2, 13, 17, 16, 2, Tc Le _(min) ((CS TR-20 m nr 2-yr Raini 731 68 575 98 754 98 060 97 731 329 575 ength Slop	cfs @ 12.09 ethod, UH=S fall=3.00" Description >75% Grass Unconnecte Paved parkit Weighted A 4.28% Perv 95.72% Imp 15.77% Unc be Velocity ft) (ft/sec)	9 hrs, Volu CS, Weigh s cover, Go d pavemen ing, HSG A verage ious Area vervious Are pervious Area connected Capacity (cfs)	Subcatchm ume= ted-CN, Time ood, HSG A nt, HSG A t, HSG A becription Direct Entr	vent 30S: B.3 0.087 af, Deptt Span= 0.00-72		
Runoff by S(Type III 24-h * 2, 13, 17, 16, 2, Tc Le _(min) ((CS TR-20 m nr 2-yr Raini 731 68 575 98 754 98 060 97 731 329 575 ength Slop	cfs @ 12.09 ethod, UH=S fall=3.00" Description >75% Grass Unconnecte Paved parkit Weighted A 4.28% Perv 95.72% Imp 15.77% Unc be Velocity ft) (ft/sec)	9 hrs, Volu CS, Weigh s cover, Go d pavemen ing, HSG A verage ious Area vervious Are pervious Area connected Capacity (cfs)	Subcatchm ume= ted-CN, Time ood, HSG A nt, HSG A t, HSG A becription Direct Entr	eent 30S: B.3 0.087 af, Deptt Span= 0.00-72		
Runoff by S(Type III 24-h * 2,; 13, 17, 16,; 2, Tc Le (min) (6.0	CS TR-20 m nr 2-yr Raint (<u>sf) CN</u> 731 68 575 98 754 98 060 97 731 329 575 575 soft Slop feet) (ft/	cfs @ 12.09 ethod, UH=S fall=3.00" Description >75% Grass Unconnecte Paved parkit Weighted A 4.28% Perv 95.72% Imp 15.77% Unc be Velocity ft) (ft/sec)	9 hrs, Volu CS, Weigh s cover, Go d pavemen ing, HSG A verage ious Area bervious Area bervious Area connected Capacity (cfs)	Subcatchm ume= ted-CN, Time bod, HSG A nt, HSG A c ea Description Direct Entr Subcatchm	vent 30S: B.3 0.087 af, Deptt Span= 0.00-72	.00 hrs, dt= 0.05 hrs	
Runoff by S(Type III 24-h * 2,, 13,; 16,; 2,5 Tc Le (min) (6.0 Runoff =	CS TR-20 m nr 2-yr Raini (sf) CN 731 68 575 98 575 98 060 97 731 97 329 575 575 songth Slop feet) (ft/	cfs @ 12.09 ethod, UH=S fall=3.00" Description >75% Grass Unconnecte Paved parkit Weighted A 4.28% Perv 95.72% Imp 15.77% Unconecte yeighted A 4.28% Perv 95.72% Imp 15.77% Unconecte yeighted A 5.72% Imp 15.72% Imp 15.72	9 hrs, Volu CS, Weigh s cover, Gc d pavemen ing, HSG A verage ious Area verage ious Area verous Area verous Area connected Capacity (cfs)	Subcatchm Ime= Ited-CN, Time Dod, HSG A A A Description Direct Entr Subcatchm Ime=	eent 30S: B.3 0.087 af, Deptt Span= 0.00-72 y, eent 31S: B.4 0.087 af, Deptt	.00 hrs, dt= 0.05 hrs	

6842-Post Type III 24-hr 2-yr Rainfall	=3.00"
Prepared by {enter your company name here} HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC P	<u>age 12</u>
Area (sf) CN Description	
* 731 68 >75% Grass cover, Good, HSG A 2,575 98 Unconnected pavement, HSG A	
13,754 98 Paved parking, HSG A	
17,060 97 Weighted Average 731 4.28% Pervious Area	
16,329 95.72% Impervious Area	
2,575 15.77% Unconnected	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
6.0 Direct Entry,	
Summary for Subcatchment 32S: B.5	
Runoff = 1.18 cfs @ 12.09 hrs, Volume= 0.086 af, Depth= 1.82"	
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-yr Rainfall=3.00"	
Area (sf) CN Description	
8,616 98 Paved parking, HSG A * 8,034 68 >75% Grass cover, Good, HSG A	
1,324 98 Unconnected pavement, HSG A	
6,653 98 Roofs, HSG A 24,627 88 Weighted Average	
8,034 32.62% Pervious Area	
16,593 67.38% Impervious Area 1,324 7.98% Unconnected	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
6.0 Direct Entry,	
Summary for Subcatchment 33S: B.7	
Runoff = 2.99 cfs @ 12.48 hrs, Volume= 0.423 af, Depth= 0.76"	
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-yr Rainfall=3.00"	

			ur company n 03590 © 2020			olutions L	LC		Page 13
A	Area (sf)	CN	Description						
	129,407	68	>75% Grass						
	97,286	79	>75% Grass						
	9,046 27.194	89 43	>75% Grass						
	15,779	43 76	Woods, Goo Woods, Goo						
	4,399	82	Woods, Goo						
	1,606	98	Unconnected						
	319	98	Unconnected		nt, HSG C				
	5,475	98	Roofs, HSG						
	290,511 283,111	71	Weighted Av 97.45% Perv						
	7,400		2.55% Imper						
	1,925		26.01% Unco						
	Length	Slop			Description	n			
(min)		(ft/1	t) (ft/sec)	(cfs)	Direct End				
30.0					Direct Ent	ıry,			
			Summ	arv for	Subcatch	ment 34	4S: B.8		
				-					
lunoff	=	0.76	cfs @ 12.09	hrs, Volu	ume=	0.058	af, Depth= 2	.45"	
			U	,			· ·		
lunoff l	by SCS TF	R-20 m	ethod, UH=SC	,			· ·	.45" rs, dt= 0.05 hr	s
unoff l		R-20 m	ethod, UH=SC	,			· ·		s
tunoff I ype III	by SCS TF	R-20 m	ethod, UH=SC	,			· ·		s
tunoff I ype III	oy SCS TF 24-hr 2-y Area (sf) 9,724	R-20 m r Rainf <u>CN</u> 98	ethod, UH=SC all=3.00" <u>Description</u> Paved parkir	CS, Weigh	nted-CN, Tim		· ·		s
tunoff I ype III	oy SCS TF 24-hr 2-y Area (sf) 9,724 1,396	R-20 m r Rainf <u>CN</u> 98 68	ethod, UH=SC all=3.00" <u>Description</u> Paved parkir >75% Grass	CS, Weigh	nted-CN, Tim		· ·		s
tunoff I ype III	by SCS TF 24-hr 2-y Area (sf) 9,724 1,396 1,364	R-20 m r Rainf <u>CN</u> 98 68 98	ethod, UH=SC all=3.00" <u>Description</u> Paved parkir >75% Grass <u>Unconnected</u>	CS, Weigh ng, HSG A cover, Go	nted-CN, Tim		· ·		s
tunoff I ype III	by SCS TF 24-hr 2-y Area (sf) 9,724 1,396 1,364 12,484	R-20 m r Rainf <u>CN</u> 98 68	ethod, UH=SC all=3.00" Description Paved parkir >75% Grass Unconnected Weighted Av	CS, Weigh ng, HSG A cover, Go <u>J pavemen</u> erage	nted-CN, Tim A bod, HSG A nt, HSG A		· ·		s
tunoff I ype III	by SCS TF 24-hr 2-y Area (sf) 9,724 1,396 1,364 12,484 1,396	R-20 m r Rainf <u>CN</u> 98 68 98	ethod, UH=SC all=3.00" Paved parkir >75% Grass Unconnected Weighted Av 11.18% Perv	CS, Weigh ng, HSG A cover, Go <u>1 pavemen</u> erage rious Area	nted-CN, Tim A bood, HSG A <u>nt, HSG A</u>		· ·		s
tunoff I ype III	by SCS TF 24-hr 2-y <u>Area (sf)</u> 9,724 1,396 1,364 12,484 1,396 11,088	R-20 m r Rainf <u>CN</u> 98 68 98	ethod, UH=SC all=3.00" <u>Description</u> Paved parkir >75% Grass <u>Unconnectec</u> Weighted Av 11.18% Perv 88.82% Impe	CS, Weigh ng, HSG A cover, Go <u>1 pavemen</u> erage rious Area ervious Area	nted-CN, Tim A bood, HSG A <u>nt, HSG A</u>		· ·		s
tunoff I ype III /	by SCS TF 24-hr 2-y 9,724 1,396 1,364 12,484 1,396 11,088 1,364	R-20 m r Rainf 98 68 98 95	ethod, UH=SC all=3.00" <u>Description</u> Paved parkir >75% Grass Unconnecter Weighted Av 11.18% Perv 88.82% Impe 12.30% Unco	CS, Weigh ng, HSG A cover, Go d pavemen rerage rious Area ervious Area connected	tted-CN, Tim A bod, HSG A nt, HSG A i ea	e Span=	· ·		s
tunoff I ype III /	by SCS TF 24-hr 2-y 9,724 1,396 1,364 12,484 1,396 11,088 1,364 Length	R-20 m r Rainf 98 68 98 95 Slop	ethod, UH=SC iall=3.00" <u>Description</u> Paved parkin >75% Grass <u>Unconnectec</u> Weighted Av 11.18% Perv 88.82% Impe 12.30% Unco we Velocity	CS, Weigh ng, HSG A cover, Go <u>1 pavemen</u> erage rious Area ervious Area connected Capacity	tted-CN, Tim A bod, HSG A nt, HSG A i ea	e Span=	· ·		s
tunoff I ype III / / Tc (min)	by SCS TF 24-hr 2-y <u>Area (sf)</u> 9,724 1,396 12,484 1,364 11,088 1,364 Length (feet)	R-20 m r Rainf 98 68 98 95	ethod, UH=SC iall=3.00" <u>Description</u> Paved parkin >75% Grass <u>Unconnectec</u> Weighted Av 11.18% Perv 88.82% Impe 12.30% Unco we Velocity	CS, Weigh ng, HSG A cover, Go d pavemen rerage rious Area ervious Area connected	nted-CN, Tim bod, HSG A nt, HSG A ea Description	ne Span=	· ·		s
tunoff I ype III /	by SCS TF 24-hr 2-y <u>Area (sf)</u> 9,724 1,396 12,484 1,364 11,088 1,364 Length (feet)	R-20 m r Rainf 98 68 98 95 Slop	ethod, UH=SC iall=3.00" <u>Description</u> Paved parkin >75% Grass <u>Unconnectec</u> Weighted Av 11.18% Perv 88.82% Impe 12.30% Unco we Velocity	CS, Weigh ng, HSG A cover, Go <u>1 pavemen</u> erage rious Area ervious Area connected Capacity	tted-CN, Tim A bod, HSG A nt, HSG A i ea	ne Span=	· ·		s
tunoff I ype III / / Tc (min)	by SCS TF 24-hr 2-y <u>Area (sf)</u> 9,724 1,396 12,484 1,364 11,088 1,364 Length (feet)	R-20 m r Rainf 98 68 98 95 Slop	ethod, UH=SC all=3.00" <u>Description</u> Paved parkir >75% Grass Unconnecter Weighted Av 11.18% Perv 88.82% Impe 12.30% Unco we Velocity t) (ft/sec)	CS, Weigh ng, HSG A cover, Gc <u>1 pavemen</u> erage rious Area ervious Area ponnected Capacity (cfs)	nted-CN, Tim bod, HSG A nt, HSG A ea Description	n ry ,	= 0.00-72.00 h		s
tunoff I ype III / / Tc (min) 6.0	by SCS TF 24-hr 2-y <u>Area (sf)</u> 9,724 1,396 12,484 1,364 11,088 1,364 Length (feet)	R-20 m r Rainf 98 68 98 95 Slop (ft/	ethod, UH=SC all=3.00" <u>Description</u> Paved parkir >75% Grass Unconnecter Weighted Av 11.18% Perv 88.82% Impe 12.30% Unco we Velocity t) (ft/sec)	CS, Weigh ng, HSG A cover, Gc 4 pavemen erage rious Area rrvious Ar connected Capacity (cfs)	ood, HSG A nt, HSG A ea Description Direct Ent	n n ry, ment 34	= 0.00-72.00 h	rs, dt= 0.05 hr	s
Tc (min) 6.0	by SCS TF 24-hr 2-y 9,724 1,396 11,364 11,088 1,364 Length (feet)	R-20 m r Rainf 98 68 98 95 Slop (ft/	ethod, UH=SC all=3.00" <u>Description</u> Paved parkir >75% Grass Unconnected Weighted Av 11.18% Perv 88.82% Impe 12.30% Unco we Velocity t) (ft/sec) Summ cfs @ 12.30	CS, Weigh ng, HSG A cover, Gc <u>1 pavemen</u> erage fous Area ervious Ar onnected Capacity (cfs) a ry for S hrs, Volu	ood, HSG A ht, HSG A ea Description Direct Ent Subcatche	n rry, 0.484 ;	5 S: C.1	rs, dt= 0.05 hr	
Tc (min) 6.0	by SCS TF 24-hr 2-y 9,724 1,396 1,364 1,364 1,364 Length (feet) =	R-20 m r Rainf 98 68 98 95 95 Slop (ft/ 4.39 R-20 m	ethod, UH=SC iall=3.00" <u>Description</u> Paved parkir >75% Grass Unconnecter Weighted Av 11.18% Perv 88.82% Impe 12.30% Unco we Velocity t) (ft/sec) Summ cfs @ 12.30 ethod, UH=SC	CS, Weigh ng, HSG A cover, Gc <u>1 pavemen</u> erage fous Area ervious Ar onnected Capacity (cfs) a ry for S hrs, Volu	ood, HSG A ht, HSG A ea Description Direct Ent Subcatche	n rry, 0.484 ;	5 S: C.1	rs, dt= 0.05 hr	
Tc ((min)) (unoff tunoff	by SCS TF 24-hr 2-y 9,724 1,396 11,364 11,088 1,364 Length (feet)	R-20 m r Rainf 98 68 98 95 95 Slop (ft/ 4.39 R-20 m	ethod, UH=SC iall=3.00" <u>Description</u> Paved parkir >75% Grass Unconnecter Weighted Av 11.18% Perv 88.82% Impe 12.30% Unco we Velocity t) (ft/sec) Summ cfs @ 12.30 ethod, UH=SC	CS, Weigh ng, HSG A cover, Gc <u>1 pavemen</u> erage fous Area ervious Ar onnected Capacity (cfs) a ry for S hrs, Volu	ood, HSG A ht, HSG A ea Description Direct Ent Subcatche	n rry, 0.484 ;	5 S: C.1	rs, dt= 0.05 hr	
Tc ((min)) (unoff tunoff	by SCS TF 24-hr 2-y 9,724 1,396 1,364 1,364 1,364 Length (feet) =	R-20 m r Rainf 98 68 98 95 95 Slop (ft/ 4.39 R-20 m	ethod, UH=SC iall=3.00" <u>Description</u> Paved parkir >75% Grass Unconnecter Weighted Av 11.18% Perv 88.82% Impe 12.30% Unco we Velocity t) (ft/sec) Summ cfs @ 12.30 ethod, UH=SC	CS, Weigh ng, HSG A cover, Gc <u>1 pavemen</u> erage fous Area ervious Ar onnected Capacity (cfs) a ry for S hrs, Volu	ood, HSG A ht, HSG A ea Description Direct Ent Subcatche	n rry, 0.484 ;	5 S: C.1	rs, dt= 0.05 hr	
Tc (min) 6.0	by SCS TF 24-hr 2-y 9,724 1,396 1,364 1,364 1,364 Length (feet) =	R-20 m r Rainf 98 68 98 95 95 Slop (ft/ 4.39 R-20 m	ethod, UH=SC iall=3.00" <u>Description</u> Paved parkir >75% Grass Unconnecter Weighted Av 11.18% Perv 88.82% Impe 12.30% Unco we Velocity t) (ft/sec) Summ cfs @ 12.30 ethod, UH=SC	CS, Weigh ng, HSG A cover, Gc <u>1 pavemen</u> erage fous Area ervious Ar onnected Capacity (cfs) a ry for S hrs, Volu	ood, HSG A ht, HSG A ea Description Direct Ent Subcatche	n rry, 0.484 ;	5 S: C.1	rs, dt= 0.05 hr	
Tc (min) 6.0	by SCS TF 24-hr 2-y 9,724 1,396 1,364 1,364 1,364 Length (feet) =	R-20 m r Rainf 98 68 98 95 95 Slop (ft/ 4.39 R-20 m	ethod, UH=SC iall=3.00" <u>Description</u> Paved parkir >75% Grass Unconnecter Weighted Av 11.18% Perv 88.82% Impe 12.30% Unco we Velocity t) (ft/sec) Summ cfs @ 12.30 ethod, UH=SC	CS, Weigh ng, HSG A cover, Gc <u>1 pavemen</u> erage fous Area ervious Ar onnected Capacity (cfs) a ry for S hrs, Volu	ood, HSG A ht, HSG A ea Description Direct Ent Subcatche	n rry, 0.484 ;	5 S: C.1	rs, dt= 0.05 hr	
Tc (min) 6.0	by SCS TF 24-hr 2-y 9,724 1,396 1,364 1,364 1,364 Length (feet) =	R-20 m r Rainf 98 68 98 95 95 Slop (ft/ 4.39 R-20 m	ethod, UH=SC iall=3.00" <u>Description</u> Paved parkir >75% Grass Unconnecter Weighted Av 11.18% Perv 88.82% Impe 12.30% Unco we Velocity t) (ft/sec) Summ cfs @ 12.30 ethod, UH=SC	CS, Weigh ng, HSG A cover, Gc <u>1 pavemen</u> erage fous Area ervious Ar onnected Capacity (cfs) a ry for S hrs, Volu	ood, HSG A ht, HSG A ea Description Direct Ent Subcatche	n rry, 0.484 ;	5 S: C.1	rs, dt= 0.05 hr	

6842-Post	Type III 24-hr 2-yr Rainfall=3.00"
	er your company name here} 3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 14
Area (sf)	CN Adj Description
* 128,543 * 69,229	68 >75% Grass cover, Good, HSG A 89 >75% Grass cover, Good, HSG D
* 16,469	82 Woods, Good, HSG D
14,141 7,926	98 Unconnected pavement, HSG A 98 Roofs, HSG A
236,308	78 77 Weighted Average, UI Adjusted
214,241 22.067	90.66% Pervious Area 9.34% Impervious Area
14,141	64.08% Unconnected
Tc Length (min) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)
20.0	Direct Entry,
	Summary for Subcatchment 36S: C.2
Runoff =	1.30 cfs @ 12.09 hrs, Volume= 0.097 af, Depth= 2.25"
Runoff by SCS TF Type III 24-hr 2-y	R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs r Rainfall=3.00"
Area (sf)	CN Description
12,989 * 3,687	98 Paved parking, HSG A 68 >75% Grass cover, Good, HSG A
2,989	98 Unconnected pavement, HSG A
2,851	98 Roofs, HSG A 93 Weighted Average
22,516 3,687	16.38% Pervious Area
18,829	83.62% Impervious Area
2,989	15.87% Unconnected
Tc Length (min) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)
6.0	Direct Entry,
	Summary for Subcatchment 37S: C.3
Runoff =	0.57 cfs @ 12.09 hrs, Volume= 0.041 af, Depth= 1.74"
Runoff by SCS TF	R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Type III 24-hr 2-y	
Area (sf)	CN Description
5,266 * 4,754	98 Paved parking, HSG A 68 >75% Grass cover, Good, HSG A
4,754	68 >75% Grass cover, Good, HSG A 98 Roofs, HSG A
1,900	98 Roofs, HSG A
12,429 4,754	87 Weighted Average 38.25% Pervious Area
7,675	61.75% Impervious Area

Prepared by {enter your company name here} HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Sc Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Ent Summary for Subcatcher Runoff = 0.30 cfs @ 12.09 hrs, Volume= Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Tim Type III 24-hr 2-yr Rainfall=3.00" <u>Area (sf) CN Description</u> 4,655 98 Paved parking, HSG A 4,655 100.00% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Ent Summary for Subcatcher Runoff = 0.38 cfs @ 12.09 hrs, Volume= Runoff SCS TR-20 method, UH=SCS, Weighted-CN, Tim Type III 24-hr 2-yr Rainfall=3.00" <u>Area (sf) CN Description</u> 4,080 98 Paved parking, HSG A 1,777 98 Unconnected pavement, HSG A 1,777 30.34% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Ent Summary for Subcatcher Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Ent Summary for Subcatcher	Image: marked system Tc Image: marked system Tc Image: marked system 6.0 Image: marked system Runoff Image: marked system Runof
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Ent Summary for Subcatchn Runoff = 0.30 cfs @ 12.09 hrs, Volume= Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Tim Type III 24-hr 2-yr Rainfall=3.00" Area (sf) CN Description 4.655 98 Paved parking, HSG A 4.655 100.00% Impervious Area Tc Length Slope Velocity Capacity Description 6.0 Direct Ent Summary for Subcatchn Runoff = 0.38 cfs @ 12.09 hrs, Volume= Kog 98	m
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Ent Summary for Subcatchn Runoff = 0.30 cfs @ 12.09 hrs, Volume= Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Tim Type III 24-hr 2-yr Rainfall=3.00" Area (sf) CN Description 4,655 98 Paved parking, HSG A 4,655 100.00% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) 6.0 Direct Ent Summary for Subcatchn Runoff = 0.38 cfs @ 12.09 hrs, Volume=	ry, 6.0 nent 38S: C.4 Runoff 0.025 af, Depth= 2.77" Runoff b e Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III :
6.0 Direct Ent Bunoff is presented by SCS TR-20 method, UH=SCS, Weighted-CN, Tim Type III 24-hr 2-yr Rainfall=3.00" Area (sf) CN Description 4,655 98 Paved parking, HSG A 4,655 100.00% Impervious Area Tc Length Slope Velocity Capacity Description 6.0 Direct Ent Bunoff by SCS TR-20 method, UH=SCS, Weighted-CN, Tim Type III 24-hr 2-yr Rainfall=3.00" Area (sf) CN Direct Ent Summary for Subcatchr Runoff = 0.38 cfs @ 12.09 hrs, Volume= Runoff = 0.38 cfs @ 12.09 hrs, Volume= Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Tim Type III 24-hr 2-yr Rainfall=3.00" Area (sf) CN Description 4,080 98 Paved parking, HSG A 1,777 98 Unconnected pavement, HSG A 1,777 30.34% Unconnected 1,777 Tc Length Slope Velocity Capacity 5,857 98 Weighted Average 5,857 100.00% Imper	ry, nent 38S: C.4 0.025 af, Depth= 2.77" e Span= 0.00-72.00 hrs, dt= 0.05 hrs ry, Tc 6.0
Runoff= $0.30 \text{ cfs} @ 12.09 \text{ hrs, Volume=}$ Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Tim Type III 24-hr 2-yr Rainfall=3.00"Area (sf)CNDescription4,6559898Paved parking, HSG A4,655100.00% Impervious AreaTcLengthSlopeVelocityCapacityDescription(min)(feet)(ft/ft)(ft/sec)6.0Direct EntSummary for SubcatcherRunoff=0.38 cfs @12.09 hrs, Volume=Runoff=0.38 cfs @12.09 hrs, Volume=RunoffSSTR-20 method, UH=SCS, Weighted-CN, Tim Type III 24-hr 2-yr Rainfall=3.00"Area (sf)CNDescription4,08098Paved parking, HSG A1,77798Unconnected pavement, HSG A5,857100.00% Impervious Area1,77730.34% UnconnectedTcLengthSlopeVelocityCapacityDescription(min)(feet)(ft/ft)(ft/sec)(cfs)Direct Ent	0.025 af, Depth= 2.77" e Span= 0.00-72.00 hrs, dt= 0.05 hrs
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Tim Type III 24-hr 2-yr Rainfall=3.00" Area (sf) CN Description 4,655 98 Paved parking, HSG A 4,655 100.00% Impervious Area Tc Length Slope 0 (ft/ft) (ft/sec) (cfs) 6.0 Direct Ent Summary for Subcatchr Runoff = 0.38 cfs @ 12.09 hrs, Volume= Runoff = 0.38 cfs @ 12.09 hrs, Volume= Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Tim Type III 24-hr 2-yr Rainfall=3.00" Area (sf) CN Description 4,080 98 Paved parking, HSG A 1,777 98 Unconnected pavement, HSG A 1,777 30.34% Unconnected Tc Length Slope Velocity Capacity Tc Length Slope Velocity Capacity Description 4,080 98 Paved parking, HSG A 1,777 30.34% Unconnected 1,777 30.34%	0.025 af, Depth= 2.77" e Span= 0.00-72.00 hrs, dt= 0.05 hrs A Type III : A Tc (min) 6.0
Type III 24-hr 2-yr Rainfall=3.00" Area (sf) CN Description 4,655 98 Paved parking, HSG A 4,655 100.00% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Ent Summary for Subcatchr Runoff 0.38 cfs @ 12.09 hrs, Volume= Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Tim Type III 24-hr 2-yr Rainfall=3.00" Area (sf) CN Description 4,080 98 Paved parking, HSG A 1,777 98 Unconnected pavement, HSG A 5,857 100.00% Impervious Area 1,777 30.34% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) Direct Ent	e Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III :
4,655 98 Paved parking, HSG A 4,655 100.00% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) Direct Ent 6.0 Direct Ent Summary for Subcatchr Runoff = 0.38 cfs @ 12.09 hrs, Volume= Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Tim Type III 24-hr 2-yr Rainfall=3.00" Area (sf) CN Description 4,080 98 Paved parking, HSG A 1,777 98 Unconnected pavement, HSG A 5,857 100.00% Impervious Area 1,777 30.34% Unconnected Tc Length Slope Velocity Capacity Description 1,777 30.34% Unconnected Tc Length Slope Velocity Capacity Description 6.0 Direct Ent Direct Ent Direct Ent Direct Ent	Tc (min) 6.0
4,655 98 Paved parking, HSG A 4,655 100.00% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) Direct Ent 6.0 Direct Ent Summary for Subcatchr Runoff = 0.38 cfs @ 12.09 hrs, Volume= Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Tim Type III 24-hr 2-yr Rainfall=3.00" Area (sf) CN Description 4,080 98 Paved parking, HSG A 1,777 98 Unconnected pavement, HSG A 5,857 100.00% Impervious Area 1,777 30.34% Unconnected Tc Length Slope Velocity Capacity Description 1,777 30.34% Unconnected Tc Length Slope Velocity Capacity Description 6.0 Direct Ent Direct Ent Direct Ent Direct Ent	ry, Tc 6.0
Tc Length (feet) Slope (ft/ft) (ft/sec) Capacity (cfs) Description (cfs) 6.0 Direct Ent Summary for Subcatcher Runoff = 0.38 cfs @ 12.09 hrs, Volume= Runoff = 0.38 cfs @ 12.09 hrs, Volume= Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Tim Type III 24-hr 2-yr Rainfall=3.00" Area (sf) CN 4,080 98 Paved parking, HSG A 1,777 98 Unconnected pavement, HSG A 5,857 100.00% Impervious Area 1,777 30.34% Unconnected Tc Length Slope Velocity Capacity Description Tc Length Slope Velocity Capacity Description 6.0 Direct Ent	ry, Tc 6.0
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Ent Summary for Subcatcher Runoff = 0.38 cfs @ 12.09 hrs, Volume= Runoff s 0.38 cfs @ 12.09 hrs, Volume= Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Tim Type III 24-hr 2-yr Rainfall=3.00" Area (sf) CN Description 4,080 98 Paved parking, HSG A 1,777 98 Unconnected pavement, HSG A 5,857 100.00% Impervious Area 1,777 30.34% Unconnected Tc Length Slope Velocity Capacity Descriptior (min) (feet) (ft/ft) (ft/sec) (cfs) Direct Ent	ry, Tc 6.0
6.0 Direct Ent Bunoff by SCS TR-20 method, UH=SCS, Weighted-CN, Tim Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Tim Type III 24-hr 2-yr Rainfall=3.00" Area (sf) CN 4,080 98 Paved parking, HSG A 1,777 98 5,857 100.00% 5,857 100.00% 1,777 30.34% 1,777 30.34% Tc Length Slope Velocity Cheet (ft/ft) 6.0 Direct Ent	ry, (min) 6.0
Runoff = 0.38 cfs @ 12.09 hrs, Volume= Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Tim Type III 24-hr 2-yr Rainfall=3.00" Area (sf) CN Description 4,080 98 Paved parking, HSG A 1,777 98 Unconnected pavement, HSG A 5,857 98 Weighted Average 5,857 100.00% Impervious Area 1,777 30.34% Unconnected Tc Length Slope Velocity Capacity Min (ft/ft) (ft/sec) (cfs) 6.0 Direct Ent	
Runoff = 0.38 cfs @ 12.09 hrs, Volume= Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Tim Type III 24-hr 2-yr Rainfall=3.00" Area (sf) CN Description 4,080 98 Paved parking, HSG A 1,777 98 Unconnected pavement, HSG A 5,857 98 Weighted Average 5,857 100.00% Impervious Area 1,777 30.34% Unconnected Tc Length Slope Velocity Capacity Description fmin (feet) (ft/ft) (ft/sec) (cfs) Direct Ent	
4,080 98 Paved parking, HSG A 1,777 98 Unconnected pavement, HSG A 5,857 98 Weighted Average 5,857 100.00% Impervious Area 1,777 30.34% Unconnected Tc Length Slope Velocity (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Ent	Runoff b Type III
5,857 98 Weighted Average 5,857 100.00% Impervious Area 1,777 30.34% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Ent	<u> </u>
5,857 100.00% Impervious Area 1,777 30.34% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Ent	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Ent	
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Ent	Tc (min)
Summary for Subcatch	ry,
	nent 40S: C.6 Runoff
Runoff = 0.26 cfs @ 12.09 hrs, Volume=	0.021 af, Depth= 2.77" Runoff b
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Tim Type III 24-hr 2-yr Rainfall=3.00"	e Span= 0.00-72.00 hrs, dt= 0.05 hrs
Area (sf) CN Description	
4,047 98 Paved parking, HSG A	
4,047 100.00% Impervious Area	

Tc Length	Slope Velocity	Capacity		<u>ge 16</u>
(min) (feet) 6.0	(ft/ft) (ft/sec)	(cfs)	Direct Entry.	
0.0	C	nom for S	.	
		•	Subcatchment 41S: C.7	
unoff =	0.47 cfs @ 12.0	9 hrs, Volu	ume= 0.038 af, Depth= 2.77"	
	R-20 method, UH=S /r Rainfall=3.00"	CS, Weight	hted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs	
Area (sf)	CN Description			
6,072 1,116	98 Paved park 98 Roofs, HSG		A	
7,188 7,188	98 Weighted A		Area	
Tc Length (min) (feet)	Slope Velocity (ft/ft) (ft/sec)	Capacity (cfs)		
6.0			Direct Entry,	
	Sumr	nary for S	Subcatchment 42S: C.8	
unoff =	0.50 cfs @ 12.0	9 hrs, Volu	ume= 0.040 af, Depth= 2.77"	
	R-20 method, UH=S /r Rainfall=3.00"	CS, Weight	hted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs	
Area (sf)	CN Description			
7,639	98 Paved park			
7,639	100.00% In	npervious Ar	Area	
Tc Length (min) (feet)	Slope Velocity (ft/ft) (ft/sec)	Capacity (cfs)		
6.0			Direct Entry,	
	Sumr	mary for S	Subcatchment 43S: C.9	
	0.57 cfs @ 12.0	9 hrs, Volu	ume= 0.046 af, Depth= 2.77"	
unoff =	R-20 method UH=S	CS, Weight	hted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs	
unoff by SCS T	r Rainfall=3.00"			
unoff by SCS T ype III 24-hr 2- Area (sf)	r Rainfall=3.00" CN Description			
unoff by SCS T ype III 24-hr 2-	r Rainfall=3.00" <u>CN Description</u> 98 Paved park			

			company			Type III 24-hr 2-y	
HydroCA	D® 10.10-	3a s/n 0.	3590 © 202	U HydroCAL	Software So	Iutions LLC	Page 17
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description	I	
6.0	(1001)	(1011)	(14000)	(010)	Direct Entr	ry,	
			Summ	nary for S	ubcatchm	ent 44S: C.10	
Runoff	=	0.35 ct	fs @ 12.0	9 hrs, Volu	ime=	0.028 af, Depth= 2.77"	
	y SCS TF 24-hr 2-y			CS, Weigh	ted-CN, Tim	e Span= 0.00-72.00 hrs, dt= ().05 hrs
A	rea (sf)	CN [Description				
	5,326		Paved park				
	5,326		100.00% In	pervious A	rea		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	1	
6.0	(1001)	(1010)	(11000)	(0.0)	Direct Ent	ry,	
			Summ	ary for 9	ubcatchm	oont 455: C 11	
			Summ	nary for S	Subcatchm	nent 45S: C.11	
Runoff	=	0.17 c	Summ	-		0.014 af, Depth= 2.77"	
Runoff b		R-20 met	fs @ 12.0	9 hrs, Volu	ime=).05 hrs
Runoff b Type III :	y SCS TF	R-20 met r Rainfal	fs @ 12.0	9 hrs, Volu CS, Weigh	ime=	0.014 af, Depth= 2.77").05 hrs
Runoff b Type III :	y SCS TF 24-hr 2-y <u>rea (sf)</u> 1,483	R-20 met r Rainfal <u>CN [</u> 98 F	fs @ 12.0 thod, UH=S II=3.00" <u>Description</u> Paved park	9 hrs, Volu CS, Weigh	ted-CN, Time	0.014 af, Depth= 2.77").05 hrs
Runoff b Type III :	y SCS TF 24-hr 2-y rea (sf)	R-20 met r Rainfal <u>CN [</u> 98 F 98 F	fs @ 12.0 thod, UH=S II=3.00" Description	9 hrs, Volu CS, Weigh ing, HSG A ing, HSG D	ted-CN, Time	0.014 af, Depth= 2.77").05 hrs
Runoff b Type III :	y SCS TF 24-hr 2-y <u>rea (sf)</u> 1,483 946 126 76	R-20 met r Rainfal <u>CN [</u> 98 F 98 L 98 L 98 L	fs @ 12.0 thod, UH=S II=3.00" Description Paved park Paved park Unconnecte Unconnected	9 hrs, Volu CS, Weigh ing, HSG A ing, HSG E ad pavement ad pavement	ted-CN, Time	0.014 af, Depth= 2.77").05 hrs
Runoff b Type III :	y SCS TF 24-hr 2-y <u>rea (sf)</u> 1,483 946 126 76 2,631	R-20 met r Rainfal 98 F 98 F 98 U 98 U 98 U	fs @ 12.0 thod, UH=S ll=3.00" Description Paved park Paved park Unconnecte Unconnecte Weighted A	9 hrs, Volu CS, Weigh ing, HSG A ing, HSG E ed pavemen ed pavemen verage	ime= ted-CN, Time) nt, HSG A nt, HSG D	0.014 af, Depth= 2.77").05 hrs
Runoff b Type III :	y SCS TF 24-hr 2-y <u>rea (sf)</u> 1,483 946 126 76	R-20 met r Rainfal 98 F 98 F 98 U 98 U 98 U	fs @ 12.0 thod, UH=S II=3.00" Description Paved park Paved park Unconnecte Unconnected	9 hrs, Volu CS, Weigh ing, HSG A ing, HSG D d pavemer werage ipervious A	ime= ted-CN, Time) nt, HSG A nt, HSG D	0.014 af, Depth= 2.77").05 hrs
Runoff b Type III : A	y SCS TF 24-hr 2-y 1,483 946 126 2,631 2,631 202 Length	R-20 met r Rainfal 98 F 98 K 98 K 98 K 98 K	fs @ 12.0 thod, UH=S II=3.00" Description Paved park Paved park Unconnecte Weighted A 100.00% Im 7.68% Unco Velocity	9 hrs, Volu CS, Weigh ing, HSG A ing, HSG D d pavemer d pavemer verage opervious A onnected Capacity	ime= ted-CN, Time) nt, HSG A nt, HSG D	0.014 af, Depth= 2.77" e Span= 0.00-72.00 hrs, dt= 0	0.05 hrs
Runoff b Type III : A	y SCS TF 24-hr 2-y 1,483 946 126 76 2,631 2,631 202	R-20 met r Rainfal 98 F 98 F 98 U 98 U 98 U	fs @ 12.0 thod, UH=S II=3.00" Description Paved park Paved park Unconnecte Weighted A 100.00% Im 7.68% Unco Velocity	9 hrs, Volu CS, Weigh ing, HSG A ing, HSG D d pavemen ad pavemen verage opervious A opnnected	ime= ted-CN, Time) nt, HSG A nt, HSG D irea	0.014 af, Depth= 2.77" e Span= 0.00-72.00 hrs, dt= ().05 hrs
Runoff b Type III : A Tc (min)	y SCS TF 24-hr 2-y 1,483 946 126 2,631 2,631 202 Length	R-20 met r Rainfal 98 F 98 K 98 K 98 K 98 K	fs @ 12.0 thod, UH=S II=3.00" Description Paved park Paved park Unconnecte Unconnecte Unconnecte Unconnecte Neighted A 100.00% Im 7.68% Unco Velocity (ft/sec)	9 hrs, Volu CS, Weigh ing, HSG A ing, HSG D ad pavement de pavemen	ime= ted-CN, Time ht, HSG A ht, HSG D rea Description Direct Ent	0.014 af, Depth= 2.77" e Span= 0.00-72.00 hrs, dt= (0.05 hrs

Tepared by ter	nter you	ir company	name here	e}		Type III 24	···· _)· · · ··· ···	
lydroCAD® 10.10)-3a s/n	<u>03590 © 202</u>	0 HydroCAE	Software So	olutions LLC	;	Pa	age 1
Area (sf)	CN	Description						
2,144	98	Paved park		\ \				
2,144	98 98	Paved park						
853	98	Unconnecte						
696	98	Unconnecte						
96	98	Roofs, HSG		, -				
5,910	98	Weighted A	verage					
5,910		100.00% Im	npervious A	Area				
1,549		26.21% Un	connected					
Tc Length			Capacity	Descriptio	n			
(min) (feet)	(ft/1	t) (ft/sec)	(cfs)					
6.0				Direct En	t ry ,			
		Summ	nary for S	Subcatchr	nent 47S	: C.13		
Runoff =	0.13	cfs @ 12.0	9 hrs. Volu	ıme=	0.011 af.	Depth= 2		
			,	-				
Runoff by SCS T Type III 24-hr 2-			CS, Weigh	nted-CN, Tin	ne Span= 0	0.00-72.00 h	nrs, dt= 0.05 hrs	
Type III 24-hr 2-	yr Rainf	all=3.00"	, 0	nted-CN, Tin	ne Span= 0	0.00-72.00 h	nrs, dt= 0.05 hrs	
Type III 24-hr 2- Area (sf)	yr Rainf CN	all=3.00" Description			ie Span= 0	0.00-72.00 h	nrs, dt= 0.05 hrs	
Type III 24-hr 2-	yr Rainf <u>CN</u> 98	all=3.00" <u>Description</u> Paved park	ing, HSG D)	ne Span= 0	0.00-72.00 h	nrs, dt= 0.05 hrs	
Гуре III 2́4-hr 2- <u>Area (sf)</u> 1,832 155	yr Rainf CN	all=3.00" Description Paved park Unconnecte	ing, HSG E)	ne Span= 0	0.00-72.00 h	nrs, dt= 0.05 hrs	
Fype III 24-hr 2- <u>Area (sf)</u> 1,832	yr Rainf <u>CN</u> 98 98	all=3.00" <u>Description</u> Paved park	ing, HSG E ad pavement verage) nt, HSG D	ne Span= 0	0.00-72.00 h	nrs, dt= 0.05 hrs	
Туре III 2́4-hr 2- <u>Area (sf)</u> 1,832 <u>155</u> 1,987	yr Rainf <u>CN</u> 98 98	all=3.00" <u>Description</u> Paved park <u>Unconnecte</u> Weighted A	ing, HSG E ed pavemen verage pervious A) nt, HSG D	ne Span= 0	0.00-72.00 h	nrs, dt= 0.05 hrs	
Гуре III 2́4-hr 2- <u>Area (sf)</u> 1,832 155 1,987 1,987 155 Тс Length	yr Rainf <u>CN</u> 98 98 98 Slop	all=3.00" <u>Description</u> Paved park <u>Unconnecte</u> Weighted A 100.00% Im 7.80% Unco Pe Velocity	ing, HSG E ad pavement verage apervious A connected Capacity) nt, HSG D Area		0.00-72.00 H	nrs, dt= 0.05 hrs	
Type III 24-hr 2- Area (sf) 1,832 155 1,987 1,987 1,987	yr Rainf <u>CN</u> 98 98 98 Slop	all=3.00" <u>Description</u> Paved park <u>Unconnecte</u> Weighted A 100.00% Im 7.80% Unco Pe Velocity	ing, HSG E ed pavemen verage pervious A ponnected) nt, HSG D Area	n	1.00-72.00 H	nrs, dt= 0.05 hrs	
Type III 24-hr 2- Area (sf) 1,832 155 1,987 1,987 155 Tc Length (min) (feet)	yr Rainf <u>CN</u> 98 98 98 Slop	all=3.00" Description Paved park Unconnecte Weighted A 100.00% Im 7.80% Unco ve Velocity t) (ft/sec)	ing, HSG E ad pavemen verage apervious A connected Capacity (cfs)) nt, HSG D Area Descriptio Direct En	n i ry,		nrs, dt= 0.05 hrs	
Type III 24-hr 2- Area (sf) 1,832 155 1,987 1,987 155 Tc Length (min) (feet)	yr Rainf <u>CN</u> 98 98 98 Slop	all=3.00" Description Paved park Unconnecte Weighted A 100.00% Im 7.80% Unco ve Velocity t) (ft/sec)	ing, HSG E ad pavemen verage apervious A connected Capacity (cfs)) nt, HSG D Area Descriptio	n i ry,		nrs, dt= 0.05 hrs	
Fype III 24-hr 2- Area (sf) 1,832 155 1,987 1,987 1,987 155 Tc Length (min) (feet) 6.0	yr Rainf <u>CN</u> 98 98 98 98 Slop (ft/f	all=3.00" Description Paved park Unconnecte Weighted A 100.00% Im 7.80% Unco ve Velocity t) (ft/sec)	ing, HSG E ad pavement verage pervious A ponnected Capacity (cfs) nary for S) nt, HSG D Area Descriptio Direct En Subcatchr	n try, nent 48S			
Type III 24-hr 2- <u>Area (sf)</u> 1,832 155 1,987 1,987 1,987 155 Tc Length (min) (feet) 6.0	yr Rainf <u>CN</u> 98 98 98 Slop (ft/f 0.12 R-20 m	all=3.00" <u>Description</u> Paved park <u>Unconnecte</u> Weighted A 100.00% Im 7.80% Unco ve Velocity t) (ft/sec) Summ cfs @ 12.0 ethod, UH=S	ing, HSG E ad pavement verage pervious A connected Capacity (cfs) nary for S 9 hrs, Volu) nt, HSG D Area Descriptio Direct En Subcatchr	n i ry , nent 48S	: C.14		
Fype III 24-hr 2- <u>Area (sf)</u> 1,832 155 1,987 1,987 1,987 155 Tc Length (min) (feet) 6.0 Runoff = Runoff by SCS T	yr Rainf <u>CN</u> 98 98 98 Slop (ft/f 0.12 R-20 m	all=3.00" <u>Description</u> Paved park <u>Unconnecte</u> Weighted A 100.00% Im 7.80% Unco ve Velocity t) (ft/sec) Summ cfs @ 12.0 ethod, UH=S	ing, HSG E ad pavement verage opervious A connected Capacity (cfs) nary for S 9 hrs, Volu GCS, Weigh) nt, HSG D Area Descriptio Direct En Subcatchr	n i ry , nent 48S	: C.14		

		Description
1,744 141	98 98	Paved parking, HSG D Unconnected pavement, HSG D
1,885 1,885 141	98	Weighted Average 100.00% Impervious Area 7.48% Unconnected

(min)	Length (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)	
6.0		Direct Entry,	
		Summary for Subcatchment 49S: C.15	
Runoff	=	0.23 cfs @ 12.09 hrs, Volume= 0.018 af, Depth= 2.77"	
		R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hr r Rainfall=3.00"	S
A	rea (sf)	CN Description	
	3,220 267	98 Paved parking, HSG D 98 Unconnected pavement, HSG D	
	3,487	98 Weighted Average	
	3,487 267	100.00% Impervious Area 7.66% Unconnected	
Tc (min)	Length (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)	
6.0	(ieet)	Direct Entry,	
		0.23 cfs @ 12.09 hrs, Volume= 0.019 af, Depth= 2.77" R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hr r Rainfall=3.00"	s
A	rea (sf)	CN Description	
	3,238 270	98 Paved parking, HSG D 98 Unconnected pavement, HSG D	
	3,508 3,508 270	98 Weighted Average 100.00% Impervious Area 7.70% Unconnected	
Tc (min)	Length (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)	
6.0		Direct Entry,	
		Summary for Subcatchment 51S: D.1	
	=	1.60 cfs @ 12.44 hrs, Volume= 0.281 af, Depth= 0.37"	
Runoff			

6842-Post Prepared by {enter your company name here}	Type III 24-hr 2-yr Rainfall=3.00"
HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions	LLC Page 20
Area (sf) CN Description	
1,527 98 Unconnected pavement, HSG A	
182,934 68 >75% Grass cover, Good, HSG A	
 518 79 >75% Grass cover, Good, HSG B 51,440 89 >75% Grass cover, Good, HSG D 	
* 160,796 43 Woods, Good, HSG A	
5,106 65 Woods, Good, HSG B 450 82 Woods, Good, HSG D	
400,771 61 Weighted Average	
401,244 99.62% Pervious Area	
1,527 0.38% Impervious Area 1,527 100.00% Unconnected	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
20.0 Direct Entry,	
Summary for Subcatchment	52S' B 9
Runoff = 0.84 cfs @ 12.09 hrs, Volume= 0.06	2 af, Depth= 2.16"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Spa Fype III 24-hr 2-yr Rainfall=3.00"	n= 0.00-72.00 hrs, dt= 0.05 hrs
Area (sf) CN Description	
10,973 98 Paved parking, HSG A * 2.895 68 >75% Grass cover, Good, HSG A	
1,150 98 Unconnected pavement, HSG A	
15,018 92 Weighted Average	
2,895 19.28% Pervious Area 12,123 80.72% Impervious Area	
1,150 9.49% Unconnected	
Tc Length Slope Velocity Capacity Description	
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry.	
6.0 Direct Entry,	
Summary for Pond 4P: Constructed Sto	rmwater Wetland #2
nflow Area = 2.341 ac, 79.77% Impervious, Inflow Depth = nflow = 4.54 cfs @ 12.09 hrs, Volume= 0.37	
Dutflow = 0.42 cfs @ 13.02 hrs, Volume= 0.37 Primary = 0.42 cfs @ 13.02 hrs, Volume= 0.37	1 af, Atten= 91%, Lag= 55.9 min 1 af
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 Peak Elev= 213.66' @ 13.02 hrs Surf.Area= 7,993 sf Storage=	
Plug-Flow detention time= 296.6 min calculated for 0.371 af (100% Center-of-Mass det. time= 294.5 min (1,068.6 - 774.1)	6 of inflow)

Page	lutions LLC	ydroCAD Software S			ed by {enter D® 10.10-3a	
	า	Storage Description	.Storage	t Avai	Invert	Volume
below (Recalc)	ta (Irregular)Listed	Custom Stage Da	31,125 cf	r' :	212.50	#1
Wet.Area	Cum.Store	Inc.Store	Perim.	Surf.Area		Elevatio
(sq-ft)	(cubic-feet)	(cubic-feet)	(feet)	(sq-ft)	/	(feet
6,500	0	0	322.0	6,500		212.5
8,737 14,695	11,187 31,125	11,187 19,938	362.0 453.0	8,459 11,559		214.00 216.00
14,000	01,120	15,500	400.0	11,000		210.00
		et Devices			5	
Rectangular Weir				215.	Primary	#1
		d (feet) 0.20 0.40				
2.67 2.66 2.64 2 End Contraction(s)		f. (English) 2.57 2.		214.	Device 3	#2
	i Neclangular We	" Round Culvert		214.	Primary	#2 #3
e= 0.900	ng, no headwall, k	11.0' CPP, project		- 12		
.0186 '/' Cc= 0.900	.50' / 210.44' S= 0	/ Outlet Invert= 212	Inlet			
	~ ~ ~	.013, Flow Area= 1				
to weir flow at low head	C= 0.600 Limite (Free Discharge) fs)		cfs @ 13.0 gular Weir s of 3.44 c angular W	d Rectang ses 0.42 cf sted Rect	oad-Creste Ilvert (Pass Sharp-Cres	-1=Bro -3=Cul -2=\$
to weir flow at low head	C= 0.600 Limite (Free Discharge) fs)	Vert. Orifice/Grate 2 hrs HW=213.66' (Controls 0.00 cfs fs potential flow) /eir (Controls 0.00 0.42 cfs @ 4.80 fps	ofs @ 13.0 gular Weir s of 3.44 c angular W e Controls	Max=0.42 ed Rectang ses 0.42 cf sted Rect	OutFlow Moad-Crester	Primary 1=Bro 3=Cul 2=5
l to weir flow at low head	C= 0.600 Limite (Free Discharge) fs)	Vert. Orifice/Grate 2 hrs HW=213.66' (Controls 0.00 cfs fs potential flow) Veir (Controls 0.00	ofs @ 13.0 gular Weir s of 3.44 c angular W e Controls	Max=0.42 ed Rectang ses 0.42 cf sted Rect	OutFlow Moad-Crester	Primary 1=Bro 3=Cul 2=5
t to weir flow at low head	C= 0.600 Limite (Free Discharge) (fs) : Wet Basin epth = 1.33" for	Vert. Orifice/Grate 22 hrs HW=213.66' (Controls 0.00 cfs fs potential flow) /eir (Controls 0.00 0.42 cfs @ 4.80 fps hary for Pond 5F mpervious, Inflow I	cfs @ 13.0 gular Weir s of 3.44 c angular W c Controls Summ 31.40% li	Max=0.42 of d Rectang ses 0.42 of sted Rect ate (Orifice 7.170 ac,	OutFlow M oad-Crested Ilvert (Pass Sharp-Cress Orifice/Gra	Primary 1=Bro 3=Cul 2=\$ 4=0
2-yr event	C= 0.600 Limite (Free Discharge) (fs) : Wet Basin epth = 1.33" for 0.792 af	Vert. Orifice/Grate 2 hrs HW=213.66' (Controls 0.00 cfs fs potential flow) Veir (Controls 0.00 0.42 cfs @ 4.80 fps hary for Pond 5F mpervious, Inflow [rs, Volume=	cfs @ 13.0 gular Weir s of 3.44 c angular W c Controls Summ 31.40% li 2 12.25 h	Max=0.42 d d Rectang ses 0.42 cf sted Rect ate (Orifice 7.170 ac, 6.04 cfs @	OutFlow M oad-Crested Ivert (Pass Sharp-Crest Orifice/Gra	rimary 1=Bro 3=Cul 2=\$ 4=0 nflow Ard
	C= 0.600 Limite (Free Discharge) (fs) : Wet Basin epth = 1.33" for 0.792 af	Vert. Orifice/Grate 2 hrs HW=213.66' (Controls 0.00 cfs fs potential flow) feir (Controls 0.00 0.42 cfs @ 4.80 fps hary for Pond 5F mpervious, Inflow I rs, Volume= rs, Volume=	cfs @ 13.0 gular Weir s of 3.44 c angular W c Controls Summ 31.40% li 2 12.25 h 2 12.25 h	Max=0.42 cf cd Rectan ses 0.42 cf sted Rect ate (Orifice 7.170 ac, 6.04 cfs @ 4.54 cfs @	OutFlow M oad-Creste livert (Pass Sharp-Cres Orifice/Gra	rimary 1=Bro 3=Cul 2=5 4=0 nflow Are nflow Dutflow
2-yr event	C= 0.600 Limite (Free Discharge) (fs) : Wet Basin epth = 1.33" for 0.792 af 0.792 af, Atten= 0.792 af	Vert. Orifice/Grate 2 hrs HW=213.66' (Controls 0.00 cfs fs potential flow) /eir (Controls 0.00 0.42 cfs @ 4.80 fps hary for Pond 5F mpervious, Inflow I rs, Volume= rs, Volume= rs, Volume= rs, Volume=	cfs @ 13.0 gular Weir s of 3.44 cc angular W e Controls Summ 31.40% li 2 12.25 h 2 12.46 h 12.46 h	Max=0.42 d d Rectan ses 0.42 cf sted Rect ate (Orifice 7.170 ac, 6.04 cfs @ 4.54 cfs @	OutFlow M oad-Creste livert (Pass Sharp-Cress Orifice/Gra	Primary 1=Bro 3=Cul 2== 4=0 Inflow Ard Inflow Outflow Primary
2-yr event	C= 0.600 Limite (Free Discharge) fs) : Wet Basin epth = 1.33" for 0.792 af 0.792 af, Atten= 0.792 af = 0.05 hrs	Vert. Orifice/Grate 2 hrs HW=213.66' (Controls 0.00 cfs fs potential flow) feir (Controls 0.00 0.42 cfs @ 4.80 fps hary for Pond 5F mpervious, Inflow I rs, Volume= rs, Volume=	cfs @ 13.0 gular Weir s of 3.44 c angular W c Controls Summ 31.40% li 2 12.25 h 2 12.46 h 12.46 h 12.46 h	Max=0.42 d cd Rectang ses 0.42 d sted Rect ate (Orifice 7.170 ac, 6.04 cfs @ 4.54 cfs @ 4.54 cfs @ method, T	OutFlow M oad-Creste Ilvert (Pass Sharp-Cres Orifice/Gra	Primary 1=Bro 3=Cul 2=s 4=c Inflow Ard Inflow Outflow Primary Routing b
2-yr event	C= 0.600 Limite (Free Discharge) (fs) : Wet Basin epth = 1.33" for 0.792 af 0.792 af, Atten= 0.792 af 0.792 af 0.792 af	Vert. Orifice/Grate 2 hrs HW=213.66' (Controls 0.00 cfs fs potential flow) /eir (Controls 0.00 0.42 cfs @ 4.80 fps hary for Pond 5F mpervious, Inflow I rs, Volume= rs, Volume= rs, Volume= = 0.00-72.00 hrs, dt wea= 10,941 sf St	cfs @ 13.0 yular Weir s of 3.44 c angular Wei controls Summ 31.40% In) 12.25 h) 12.46 h) 12.46 h ime Spanars	Max=0.42 d dd Rectang ses 0.42 d sted Rect sted Rect ate (Orifice 7.170 ac, 6.04 cfs @ 4.54 cfs @ method, T @ 12.46 l	OutFlow M oad-Creste livert (Pass Sharp-Crest Orifice/Gra	rimary 1=Bro 2=Cul 2=2= 4=0 nflow Ard nflow Dutflow Primary Routing E Peak Ele
2-yr event	C= 0.600 Limite (Free Discharge) (fs) : Wet Basin epth = 1.33" for 0.792 af 0.792 af, Atten= 0.792 af 0.792 af 0.792 af	Vert. Orifice/Grate 2 hrs HW=213.66' (Controls 0.00 cfs fs potential flow) feir (Controls 0.00 0.42 cfs @ 4.80 fps hary for Pond 5F mpervious, Inflow I rs, Volume= rs, Volume= rs, Volume= = 0.00-72.00 hrs, dt	cfs @ 13.0 gular Weir s of 3.44 c angular Wei controls Summ 31.40% lr 12.25 h 12.46 h 12.46 h 12.46 h 12.46 h 12.46 h	Vlax=0.42 vd Rectany ses 0.42 cf sted Rect sted Rect ate (Orifice 7.170 ac, 6.04 cfs @ 4.54 cfs @ method, T @ 12.46 l a time= 30.	OutFlow M oad-Creste Ulvert (Pass Sharp-Crest Orifice/Gra rea = = 4 = 4 = 4 = 4 = 4 = 4 = 4 = 4 = 4 =	Primary 1=Bro 3=Cul -2=: 4=: Inflow Ard Inflow Outflow Primary Routing L Peak Ele Plug-Flov
2-yr event	C= 0.600 Limite (Free Discharge) (fs) : Wet Basin epth = 1.33" for 0.792 af 0.792 af, Atten= 0.792 af = 0.05 hrs orage= 5,583 cf 100% of inflow)	Vert. Orifice/Grate 2 hrs HW=213.66' (Controls 0.00 cfs fs potential flow) feir (Controls 0.00 0.42 cfs @ 4.80 fps hary for Pond 5F mpervious, Inflow I rs, Volume= rs, Volume= rs, Volume= e 0.00-72.00 hrs, dt trea= 10,941 sf St ulated for 0.792 af 6.0 - 825.8)	cfs @ 13.0 gular Weir s of 3.44 c angular Wei controls Summ 31.40% lr 12.25 h 12.46 h 12.46 h 12.46 h 12.46 h 12.46 h	Max=0.42 d d Rectang ses 0.42 d sted Rect ate (Orifice 7.170 ac, 6 6.04 cfs (4 4.54 cfs (6 4.54 cfs (6 4.54 cfs (6 method, T (0) 12.46 l time= 30. time= 30.	OutFlow M oad-Creste Ulvert (Pass Sharp-Crest Orifice/Gra rea = = 4 = 4 = 4 = 4 = 4 = 4 = 4 = 4 = 4 =	Primary 1=Brog 3=Cul 2=5 4=0 Inflow Ard Outflow Outflow Primary Routing t Peak Ele Plug-Flov Center-ol
2-yr event 25%, Lag= 12.4 min	C= 0.600 Limite (Free Discharge) (fs) : Wet Basin epth = 1.33" for 0.792 af 0.792 af, Atten= 0.792 af = 0.05 hrs orage= 5,583 cf 100% of inflow)	Vert. Orifice/Grate 2 hrs HW=213.66' (Controls 0.00 cfs fs potential flow) /eir (Controls 0.00 0.42 cfs @ 4.80 fps hary for Pond 5F mpervious, Inflow I rs, Volume= rs, Volume= rs, Volume= e 0.00-72.00 hrs, dt vea= 10,941 sf St ulated for 0.792 af 6.0 - 825.8) Storage Descriptic	cfs @ 13.0 gular Wein s of 3.44 c angular W controls Summ 31.40% li 2 12.25 h 2 12.46 h 2 12.46 h ime Span- rrs Surf. ² 1 min calc 2 min (85	Max=0.42 d de Rectang ses 0.42 d sted Rect ate (Orifice 7.170 ac, 6.04 cfs @ 4.54 cfs @ method, T @ 12.46 l time= 30. time= 30.	OutFlow M oad-Creste livert (Pass Sharp-Cress Orifice/Gra	nflow Ard nflow Ard nflow Ard nflow Dutflow Dutflow Primary Routing E Peak Ele Plug-Flov Center-of
2-yr event 25%, Lag= 12.4 min	C= 0.600 Limite (Free Discharge) fs) : Wet Basin epth = 1.33" for 0.792 af, Atten= 0.792 af, Atten= 0.792 af 100% of inflow)	Vert. Orifice/Grate 2 hrs HW=213.66' (Controls 0.00 cfs fs potential flow) /eir (Controls 0.00 0.42 cfs @ 4.80 fps hary for Pond 5F mpervious, Inflow I rs, Volume= rs, Volume= rs, Volume= e 0.00-72.00 hrs, dt vea= 10,941 sf St ulated for 0.792 af 6.0 - 825.8) Storage Descriptic	cfs @ 13.0 gular Wein s of 3.44 c angular Wei controls Summ 31.40% li) 12.25 h) 12.46 h) 12.46 h) 12.46 h) 12.46 h 1 12.46 h (12.46 h) 12.46 h) 12.46 h (12.46 h) 12.46 h (12.46 h) 12.46 h) 12.46 h) 12.46 h (12.46 h) 12.46 h) 12.46 h (12.46 h) 12.4	Max=0.42 d de Rectang ses 0.42 d sted Rect ate (Orifice 7.170 ac, 6.04 cfs @ 4.54 cfs @ method, T @ 12.46 l time= 30. time= 30.	OutFlow M oad-Creste livert (Pass Sharp-Cres Orifice/Gra	nflow Ard nflow Ard nflow Ard Dutflow Primary Routing b Peak Ele Plug-Flov Center-of Volume #1
2-yr event 25%, Lag= 12.4 min below (Recalc)	C= 0.600 Limite (Free Discharge) (fs) : Wet Basin epth = 1.33" for 0.792 af 0.792 af, Atten= 0.792 af e 0.05 hrs orage= 5,583 cf 100% of inflow) ta (Irregular)Listed	Vert. Orifice/Grate 2 hrs HW=213.66' (Controls 0.00 cfs fs potential flow) feir (Controls 0.00 0.42 cfs @ 4.80 fps hary for Pond 5F mpervious, Inflow I rs, Volume= rs, Volume= rs, Volume= = 0.00-72.00 hrs, dt trea= 10,941 sf St ulated for 0.792 af 6.0 - 825.8) Storage Description Custom Stage Data Inc.Store	cfs @ 13.0 gular Weir s of 3.44 c angular W c Controls Summ 31.40% Ir) 12.25 h) 12.26 h) 12.46 h ime Span- ars Surf.A 1 min calc 2 min (85 <u>Storage</u>)3,930 cf	Max=0.42 d d Rectang ses 0.42 d sted Rect ate (Orifice 7.170 ac, 6.04 cfs (4.54 cfs (4.54 cfs (4.54 cfs (0 12.46 l 0 time= 30. time= 30. time= 30. t Avail 1 100 times (1 100 times) t Avail 1 100 times (1 100 times) t	OutFlow M oad-Creste livert (Pass Sharp-Cress Orifice/Gra rea = = 4 = 4 = 4 = 4 = 4 = 4 = 4 = 4 = 4 =	Primary 3=Cul 3=Cul 2=3 4=0 1=2=3 4=0 0utflow Primary Routing b Peak Ele Plug-Flov Center-ol Volume
2-yr event 25%, Lag= 12.4 min below (Recalc) <u>Wet.Area (sq-ft)</u> 9,189	C= 0.600 Limite (Free Discharge) (fs) : Wet Basin epth = 1.33" for 0.792 af 0.792 af, Atten= 0.792 af = 0.05 hrs orage = 5,583 cf 100% of inflow) h ta (Irregular)Listed Cum.Store	Vert. Orifice/Grate 2 hrs HW=213.66' (Controls 0.00 cfs fs potential flow) Veir (Controls 0.00 0.42 cfs @ 4.80 fps hary for Pond 5F mpervious, Inflow I rs, Volume= rs, Volume= rs, Volume= e 0.00-72.00 hrs, dt vea= 10,941 sf St ulated for 0.792 af 6.0 - 825.8) Storage Descriptic Custom Stage Descriptic Inc.Store (cubic-feet) 0	cfs @ 13.0 gular Weir s of 3.44 c angular Wei controls 31.40% lr 1 2.25 h 2 12.46 h 1	Max=0.42 (dd Rectanges 0.42 cf sted Rectate 7.170 ac, 6.04 cfs @ 4.54 cfs @ method, T @ 12.46 l n time= 30. t Avail y 10 Surf.Area (sq-ft) 9,189	OutFlow M oad-Creste livert (Pass Sharp-Cres Orifice/Gra rea = (= 2 by Stor-Ind ev= 214.56' w detention of-Mass det. <u>Invert</u> 214.00' on S	Primary 1=Brod 3=Cul 2=S 4=C 1=Cul 2=S 4=C 1=Cul 2=S 4=C 1=Cul 2=S 4=C 4=C 1=Cul 2=S 4=C 4=C 1=Cul 2=S 4=C 4=C 4=C 4=C 4=C 4=C 4=C 4=C
2-yr event 25%, Lag= 12.4 min below (Recalc) Wet.Area (sq-ft)	C= 0.600 Limite (Free Discharge) (Free Discharge) (Fs) (Fs) (Fs) (Fs) (Fs) (Fs) (Fs) (Fs	Vert. Orifice/Grate 2 hrs HW=213.66' (Controls 0.00 cfs fs potential flow) feir (Controls 0.00 0.42 cfs @ 4.80 fps hary for Pond 5F mpervious, Inflow I rs, Volume= rs, Volume= rs, Volume= = 0.00-72.00 hrs, dt vrea= 10,941 sf St ulated for 0.792 af 6.0 - 825.8) Storage Descriptic Custom Stage Descriptic Inc.Store (cubic-feet)	cfs @ 13.0 gular Wei s of 3.44 c angular W c Controls 31.40% li) 12.26 h) 12.46 h)	Max=0.42 ' dd Rectang ses 0.42 cf sted Rect sted Rect ate (Orifice 7.170 ac, 6.04 cfs @ 4.54 cfs @ 4.54 cfs @ 4.54 cfs @ 4.54 cfs @ 12.46 l time= 30. time= 30. tim= 30. time= 30. tim= 30. tim= 30. time= 30. time= 30. time=	OutFlow M oad-Crested livert (Pass Sharp-Crest Orifice/Gra	Primary 1=Brod 3=Cul 2=3 4=0 1nflow Ard Inflow Ard Notifies Primary Routing the Peak Ele Plug-Flov Center-of Volume #1 Elevation (feet

		your compa s/n 03590 ©		DCAD Software S	Solutions LLC	Page 22
Device	Routing	Invert	Outlet D	evices		
#1	Primary	213.43'	L= 580.0 Inlet / O			Ke= 0.900 0.0031 '/' Cc= 0.900
#2	Device 1	214.00'		g x 4.0' long S 6 (C= 3.20)	harp-Crested Vee/	Trap Weir
#3	Device 1	215.50'	4.2' lon Head (fe 2.50 3.0 Coef. (E	g x 4.2' bread eet) 0.20 0.40 00 3.50 4.00 inglish) 2.37 2	4.50 5.00 5.50	.20 1.40 1.60 1.80 2.00 7 2.67 2.65 2.66 2.66
-1=Ci 2⊧	Ivert (Barre Sharp-Cres	l Controls 4.5 ted Vee/Tra	54 cfs @ 3 5 Weir (Pa	.60 fps)	' (Free Discharge) f 5.53 cfs potential cfs)	
	Su	mmary for	Pond 7F	P: Construct	ed Stormwater V	Wetland #1
nflow A nflow					Depth = 1.16" fo	or 2-yr event
Outflow Primary	= 9	9.14 cfs @ 1 9.14 cfs @ 1	2.14 hrs, 2.14 hrs,	Volume=	1.151 af, Atten= 1.151 af	= 11%, Lag= 2.9 min
Outflow Primary Routing	= 9 = 9 by Stor-Ind 1	9.14 cfs @ 1 9.14 cfs @ 1 method, Time	2.14 hrs, 2.14 hrs, Span= 0.	Volume= Volume= 00-72.00 hrs, d	1.151 af, Atten= 1.151 af	= 11%, Lag= 2.9 min
Dutflow Primary Routing Peak El Plug-Flo	= 9 = 9 ev= 215.27	9.14 cfs @ 1 9.14 cfs @ 1 method, Time @ 12.14 hrs	2.14 hrs, 2.14 hrs, Span= 0. Surf.Area	Volume= Volume= 00-72.00 hrs, d a= 11,623 sf S ted for 1.151 af	1.151 af, Atten= 1.151 af t= 0.05 hrs / 3	- 11%, Lag= 2.9 min
Outflow Primary Routing Peak El Plug-Flo Center- /olume	= 9 = 9 ev= 215.27 w detention of-Mass det.	0.14 cfs @ 1 0.14 cfs @ 1 0.14 cfs @ 1 0.14 cfs @ 1 0.14 cfs 0.14	2.14 hrs, 2.14 hrs, Span= 0. Surf.Area in calculat in (890.2 orage Str	Volume= Volume= 00-72.00 hrs, d a= 11,623 sf S ted for 1.151 af - 838.2) orage Descripti	1.151 af, Atten= 1.151 af t= 0.05 hrs / 3 torage= 5,032 cf (100% of inflow)	
Dutflow Primary Routing Peak El Plug-Flo Center-i	= s = s by Stor-Ind ev= 215.27' www.detention of-Mass.det.	0.14 cfs @ 1 0.14 cfs @ 1 0.14 cfs @ 1 0.14 cfs @ 1 0.14 cfs 0.14	2.14 hrs, 2.14 hrs, Span= 0. Surf.Area in calculat in (890.2 orage Str	Volume= Volume= 00-72.00 hrs, d a= 11,623 sf S ted for 1.151 af - 838.2) orage Descripti	1.151 af, Atten= 1.151 af t= 0.05 hrs / 3 torage= 5,032 cf (100% of inflow)	
Outflow Primary Peak El Plug-Flo Center-i <u>Volume</u> #1 Elevatio	= S by Stor-Ind i ev= 215.27' ow detention of-Mass det. <u>Invert</u> 214.80' on S	9.14 cfs @ 1 9.14 cfs @ 1 method, Time @ 12.14 hrs time= 52.4 m time= 52.0 m <u>Avail.Str</u> 14,7 urf.Area F	2.14 hrs, 2.14 hrs, Span= 0. Surf.Area in calculat in (890.2 <u>orage Str</u> 59 cf Cu Perim.	Volume= Volume= 00-72.00 hrs, d a= 11,623 sf S ted for 1.151 af - 838.2) orage Descripti istom Stage D Inc.Store	1.151 af, Atten= 1.151 af t= 0.05 hrs / 3 torage= 5,032 cf (100% of inflow) on ata (Irregular)Liste Cum.Store	d below (Recalc) Wet.Area
Outflow Primary Routing Peak El Plug-Flo Center- <u>/olume</u>	= S = S by Stor-Ind ev= 215.27' by detention of-Mass det. Invert 214.80' on Si et)	9.14 cfs @ 1 9.14 cfs @ 1 method, Time @ 12.14 hrs time= 52.4 m time= 52.0 m <u>Avail.Stc</u> 14,7 urf.Area F (sq-ft)	2.14 hrs, 2.14 h	Volume= Volume= 00-72.00 hrs, d a= 11,623 sf S ted for 1.151 af - 838.2) orage Descripti ustom Stage D	1.151 af, Atten= 1.151 af t= 0.05 hrs / 3 torage= 5,032 cf (100% of inflow) on ata (Irregular)Liste	d below (Recalc)
Dutflow Primary Routing Peak El Plug-Flc Center #1 Elevatio (fer 214.i 215.i	= \$ = \$ by Stor-Ind ev= 215.27' by detention of-Mass det. <u>Invert</u> 214.80' on \$ ot \$ 00 00	9.14 cfs @ 1 9.14 cfs @ 1 method, Time @ 12.14 hrs time= 52.4 rr time= 52.0 rr <u>Avail.Stc</u> 14,7 urf.Area F (sq-ft) 9,939 10,413	2.14 hrs, 2.14 hrs, 2.14 hrs, 2.5 span= 0. Surf.Area in calculatin (890.2 brage Str 59 cf Ct 2 erim. (feet) 766.0 771.0	Volume= Volume= 00-72.00 hrs, d a= 11,623 sf S ted for 1.151 af - 838.2) orage Descripti ustom Stage D Inc.Store (cubic-feet) 0 2,035	1.151 af, Atten= 1.151 af t= 0.05 hrs / 3 torage= 5,032 cf (100% of inflow) on ata (Irregular)Liste Cum.Store (cubic-feet) 0 2,035	d below (Recalc) Wet.Area (sq-ft) 9,939 10,570
Dutflow Primary Routing Peak El Plug-Flo Center-4 /olume #1 Elevatio (feo 214.5	= \$ = \$ by Stor-Ind ev= 215.27' by detention of-Mass det. <u>Invert</u> 214.80' on \$ ot \$ 00 00	9.14 cfs @ 1 9.14 cfs @ 1 method, Time @ 12.14 hrs time= 52.4 rr time= 52.0 rr <u>Avail.Stc</u> 14,7 urf.Area F (sq-ft) 9,939 10,413	2.14 hrs, 2.14 h	Volume= Volume= 00-72.00 hrs, d a= 11,623 sf S ted for 1.151 af - 838.2) orage Descripti ustom Stage D Inc.Store (cubic-feet) 0	1.151 af, Atten= 1.151 af t= 0.05 hrs / 3 torage= 5,032 cf (100% of inflow) on ata (Irregular)Liste Cum.Store (cubic-feet) 0	d below (Recalc) Wet.Area (sq-ft) 9,939
Dutflow Primary Routing Peak El Plug-Flc Center-d #1 Elevatin (fer 214.; 215.] 216.] Device	= { = { by Stor-Ind ev= 215.27' bw detention of-Mass det. <u>Invert</u> 214.80' con Si a0 00 Routing	9.14 cfs @ 1 9.14 cfs @ 1 method, Time @ 12.14 hrs time= 52.4 rr time= 52.0 rr Avail.Sto 14,7 urf.Area F 9,939 10,413 15,185 1, Invert	2.14 hrs, 2.14 h	Volume= Volume= 00-72.00 hrs, d a= 11,623 sf S ted for 1.151 af - 838.2) orage Descripti ustom Stage D Inc.Store (cubic-feet) 0 2,035 12,724	1.151 af, Atten= 1.151 af t= 0.05 hrs / 3 torage= 5,032 cf (100% of inflow) on ata (Irregular)Liste Cum.Store (cubic-feet) 0 2,035 14,759	d below (Recalc) Wet.Area (sq-ft) 9,939 10,570 79,782
Dutflow Primary Routing Peak El Plug-Flc Center #1 Elevatio (fer 214.i 215.i	= { = { by Stor-Ind ev= 215.27' w detention of-Mass det. <u>Invert</u> 214.80' con Si a0 00 00 00	9.14 cfs @ 1 9.14 cfs @ 1 method, Time @ 12.14 hrs time= 52.4 m time= 52.0 m <u>Avail.Str</u> 14,7 urf.Area F (sq-ft) 9,939 10,413 15,185 1,	2.14 hrs, 2.14 h	Volume= Volume= 00-72.00 hrs, d a= 11,623 sf S ted for 1.151 af - 838.2) orage Descripti ustom Stage D Inc.Store (cubic-feet) 0 2,035 12,724 Devices ng x 10.0' brea bet) 0.20 0.40	1.151 af, Atten= 1.151 af t= 0.05 hrs / 3 torage= 5,032 cf (100% of inflow) on ata (Irregular)Liste Cum.Store (cubic-feet) 0 2,035 14,759 adth Broad-Creste 0.60 0.80 1.00 1 56 2.70 2.69 2.6	d below (Recalc) Wet.Area (sq-ft) 9,939 10,570 79,782 d Rectangular Weir .20 1.40 1.60

The production of the state of the stat

			0 HydroCAD Software			age <u>23</u>
	S	ummary for	Pond 12P: STO	NE RECHARGE TH	RENCH	
Inflow A Inflow Outflow Discard Primary	= 1.1 = 0.1 ed = 0.1	16 cfs @ 12.0 15 cfs @ 12.6 15 cfs @ 12.6	% Impervious, Inflov 9 hrs, Volume= 2 hrs, Volume= 2 hrs, Volume= 0 hrs, Volume=	v Depth = 2.77" for 0.094 af 0.094 af, Atten= 0.094 af 0.000 af	2-yr event 87%, Lag= 31.9 mir	I
Peak ĔĬ	ev= 220.30' @	12.62 hrs Su	an= 0.00-72.00 hrs, rf.Area= 2,427 sf S	torage= 1,261 cf		
			alculated for 0.094 a 810.4 - 757.8)	af (100% of inflow)		
Volume	Invert	Avail.Storag	e Storage Descrip	tion		
#1	219.00'	1,942	cf 3.00'W x 809.00 4,854 cf Overall	'L x 2.00'H Prismato x 40.0% Voids	id	
Device	U		utlet Devices			
#1	Primary	H 2 C	ead (feet) 0.20 0.4 50 3.00 oef. (English) 2.69	eadth Broad-Crested 0 0.60 0.80 1.00 1.1 2.72 2.75 2.85 2.98	20 1.40 1.60 1.80	
#2	Discarded	219.00' 2		on over Surface area		
Discard	led OutFlow N	219.00' 2 C	410 in/hr Exfiltration onductivity to Groun 0 12.62 hrs HW=22	on over Surface area dwater Elevation = 21 0.30' (Free Discharg	0.00'	
Discarc 2=Ex Primary	led OutFlow M tfiltration (Co	219.00' 2 C Max=0.15 cfs @ ontrols 0.15 cfs x=0.00 cfs @ 0	410 in/hr Exfiltratio onductivity to Groun 0 12.62 hrs HW=22	dwater Elevation = 21 0.30' (Free Discharg ' (Free Discharge)	0.00'	
Discarc 2=Ex Primary	led OutFlow M (filtration (Co / OutFlow Ma road-Crested I	219.00' 2 C Max=0.15 cfs @ ontrols 0.15 cfs x=0.00 cfs @ C Rectangular W	410 in/hr Exfiltratic onductivity to Groun 2 12.62 hrs HW=22 .00 hrs HW=219.00 /eir (Controls 0.00 o	dwater Elevation = 21 0.30' (Free Discharg ' (Free Discharge)	0.00' ∍)	
Discarc 2=Ex Primary	led OutFlow M filtration (Co y OutFlow Ma road-Crested I S area = 0. = 1.1 = 0.1 ed = 0.1	219.00' 2 CMax=0.15 cfs (ontrols 0.15 cfs) x=0.00 cfs @ 0 Rectangular M ummary for 409 ac,100.00' 16 cfs @ 12.0 15 cfs @ 12.6 15 cfs @ 12.6	410 in/hr Exfiltratio onductivity to Groun 2 12.62 hrs HW=22 .00 hrs HW=219.00 /eir (Controls 0.00 of Pond 17P: STOP	dwater Elevation = 21 0.30' (Free Discharge) (Free Discharge) (Fs) IE RECHARGE TF (N Depth = 2.77" for 0.094 af	0.00' ∍) RENCH	1
Discarc 2=E) Primary 1=Br Inflow A Inflow Outflow Discard Primary Routing	led OutFlow M (filtration (Co y OutFlow Ma road-Crested I S area = 0.1 = 1.1 = 0.1 ed = 0.1 = 0.0 by Stor-Ind me	219.00' 2 CMax=0.15 cfs (ontrols 0.15 cfs) x=0.00 cfs @ C Rectangular W ummary for 409 ac,100.00' 16 cfs @ 12.0 15 cfs @ 12.6 15 cfs @ 12.6 00 cfs @ 0.0 ethod, Time Sp	410 in/hr Exfiltratio onductivity to Groun 2 12.62 hrs HW=22 .00 hrs HW=219.00 /eir (Controls 0.00 of Pond 17P: STOI % Impervious, Inflow 9 hrs, Volume= 2 hrs, Volume= 2 hrs, Volume=	dwater Elevation = 21 0.30' (Free Discharge) fs) IE RECHARGE TF v Depth = 2.77" for 0.094 af 0.094 af, Atten= 0.094 af 0.009 af dt= 0.05 hrs	0.00' e) RENCH 2-yr event	1
Primary Primary Primary Primary Inflow A Inflow A Inflow Outflow Outflow Discard Primary Routing Peak El Plug-Flo	led OutFlow Ma (filtration (Co y OutFlow Ma road-Crested I S area = 0.1 = 0.1 ed = 0.1 = 0.0 by Stor-Ind me ev= 220.30' @	219.00' 2 Max=0.15 cfs (ontrols 0.15 cfs) x=0.00 cfs (C Rectangular W ummary for 409 ac,100.00' 16 cfs (12.0 15 cfs (12.6 12.6 15 cfs (12.6 12	410 in/hr Exfiltratio onductivity to Groun 2 12.62 hrs HW=22 .00 hrs HW=219.00 /eir (Controls 0.00 of Pond 17P: STOI % Impervious, Inflov 9 hrs, Volume= 2 hrs, Volume= 2 hrs, Volume= 0 hrs, Volume= an= 0.00-72.00 hrs,	dwater Elevation = 21 D.30' (Free Discharge) fs) NE RECHARGE TF v Depth = 2.77" for 0.094 af 0.094 af, Atten= 0.094 af 0.000 af dt= 0.05 hrs torage= 1,261 cf	0.00' e) RENCH 2-yr event	1
Primary Primary Primary Primary Inflow A Inflow A Inflow Outflow Outflow Discard Primary Routing Peak El Plug-Flo	led OutFlow Ma filtration (Co y OutFlow Ma road-Crested I S area = 0. = 1.1 = 0.1 ed = 0.1 = 0.0 by Stor-Ind ma ev= 220.30' @ bw detention tir of-Mass det. tir	219.00' 2 Max=0.15 cfs (ontrols 0.15 cfs) x=0.00 cfs @ 0 Rectangular M ummary for 409 ac,100.00' 16 cfs @ 12.0 15 cfs @ 12.6 10 cfs @ 0.0 ethod, Time Sp 12.62 hrs Su me= 52.7 min c me= 52.6 min (410 in/hr Exfiltratio onductivity to Groun 2 12.62 hrs HW=22 .00 hrs HW=219.00 feir (Controls 0.00 of Pond 17P: STOI % Impervious, Inflow 9 hrs, Volume= 2 hrs, Volume= 2 hrs, Volume= 0 hrs, Volume= 0 hrs, Volume= 0 hrs, Volume= an= 0.00-72.00 hrs, ff.Area= 2,427 sf S alculated for 0.094 a 810.4 - 757.8) e Storage Descrip	dwater Elevation = 21 0.30' (Free Discharge) fs) NE RECHARGE TF v Depth = 2.77" for 0.094 af, Atten= 0.094 af 0.009 af dt= 0.05 hrs torage= 1,261 cf af (100% of inflow)	0.00' ∍) RENCH 2-yr event 87%, Lag= 31.9 mir	

2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.32 #2 Discarded 219.00' 2.410 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 210.00' Discarded OutFlow Max=0.15 cfs 12.62 hrs HW=220.30' (Free Discharge) 2=Exfiltration (Controls 0.15 cfs) 12.62 hrs HW=219.00' (Free Discharge) Primary OutFlow Max=0.00 cfs 0.00 hrs HW=219.00' (Free Discharge) 1=Broad-Crested Rectangular Weir (Controls 0.00 cfs) Summary for Pond 19P: STONE RECHARGE TRENCH Inflow Area = 0.409 ac,100.00% Impervious, Inflow Depth = 2.77" for 2-yr event Inflow = 1.16 cfs 12.09 hrs, Volume= 0.094 af Outflow = 0.15 cfs 12.62 hrs, Volume= 0.094 af Outflow = 0.15 cfs 12.62 hrs, Volume= 0.000 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev=220.30' @ 12.62 hrs Surf.Area= 2.427 sf Storage 1.261 cf Plug-Flow detention time= 52.7 min calculated for 0.094 af (100% of inflow) Center-of-Mass det. time= 52.6 min (810.4 - 757.8) Volume 1.00 for 3.01 20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32 #2 Discarded 219	#1 #2 Discarde 2=Exfi Primary (1=Bro nflow Are nflow Are nflow Discarded	Primary Discarded d OutFlow M iltration (Co OutFlow Ma: ad-Crested I S ea = 0. = 1.1 = 0.1 d = 0.1	221.00' 219.00' Max=0.15 cfs ontrols 0.15 c x=0.00 cfs @ Rectangular ummary fo 409 ac,100. 16 cfs @ 12 15 cfs @ 12	809.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32 2.410 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 210.00' fs 12.62 hrs HW=220.30' (Free Discharge) cfs) @ 0.00 hrs HW=219.00' (Free Discharge) effor Pond 19P: STONE RECHARGE TRENCH .00% Impervious, Inflow Depth = 2.77" for 2-yr event 100% Impervious, Inflow Depth = 2.77" for 2-yr event
Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef (English) 2.69 2.75 2.85 2.98 3.08 3.20 3.28 3.31 #2 Discarded 219.00' 2.410 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 210.00' Piscarded OutFlow Max=0.15 cfs @ 12.62 hrs HW=220.30' (Free Discharge) 2=Exfiltration (Controls 0.15 cfs) ? Summary for Pond 19P: STONE RECHARGE TRENCH filow Area = 0.409 ac,100.00% Impervious, Inflow Depth = 2.77" for 2-yr event nflow = 1.16 cfs @ 12.62 hrs, Volume= 0.094 af Dutflow = 0.15 cfs @ 12.62 hrs, Volume= 0.094 af Dutflow = 0.15 cfs @ 12.62 hrs, Volume= 0.094 af Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev=220.30' @ 12.62 hrs Peak Elev= 220.30' @ 12.62 hrs Surf.Area= 2,427 sf Storage= 1,261 cf Plug-Flow detention time= 52.7 min calculated for 0.094 af (100% of inflow) Pervece Avail.Storage <th>#2 Discarde -2=Exfi Primary (-1=Bro nflow Area nflow Area nflow Dutflow Dutflow Discarded</th> <th>Discarded d OutFlow M litration (Cc OutFlow Ma: ad-Crested I S ea = 0. = 1.1 = 0.1</th> <th>219.00' Max=0.15 cfs introls 0.15 c x=0.00 cfs @ Rectangular ummary fo 409 ac,100.0 16 cfs @ 12 15 cfs @ 12</th> <th>Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32 2.410 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 210.00' fs @ 12.62 hrs HW=220.30' (Free Discharge) cfs) @ 0.00 hrs HW=219.00' (Free Discharge) ar Weir (Controls 0.00 cfs) for Pond 19P: STONE RECHARGE TRENCH .00% Impervious, Inflow Depth = 2.77" for 2-yr event</th>	#2 Discarde -2=Exfi Primary (-1=Bro nflow Area nflow Area nflow Dutflow Dutflow Discarded	Discarded d OutFlow M litration (Cc OutFlow Ma: ad-Crested I S ea = 0. = 1.1 = 0.1	219.00' Max=0.15 cfs introls 0.15 c x=0.00 cfs @ Rectangular ummary fo 409 ac,100.0 16 cfs @ 12 15 cfs @ 12	Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32 2.410 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 210.00' fs @ 12.62 hrs HW=220.30' (Free Discharge) cfs) @ 0.00 hrs HW=219.00' (Free Discharge) ar Weir (Controls 0.00 cfs) for Pond 19P: STONE RECHARGE TRENCH .00% Impervious, Inflow Depth = 2.77" for 2-yr event
#2 Discarded 219.00' 2.410 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 210.00' Discarded OutFlow Max=0.15 cfs 0.12.62 hrs HW=220.30' (Free Discharge) 2=Exfiltration (Controls 0.15 cfs) 0.00 hrs HW=219.00' (Free Discharge) 1=Broad-Crested Rectangular Weir (Controls 0.00 cfs) Summary for Pond 19P: STONE RECHARGE TRENCH Inflow Area = 0.409 ac,100.00% Impervious, Inflow Depth = 2.77'' for 2-yr event Inflow = 1.16 cfs @ 12.62 hrs, Volume= 0.094 af Dutflow = 0.15 cfs @ 12.62 hrs, Volume= 0.094 af Discarded = 0.15 cfs @ 12.62 hrs, Volume= 0.000 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Pack Elev= 220.30' @ 12.62 hrs Surf.Area= 2,427 sf Plug-Flow detention time= 52.7 min calculated for 0.094 af (100% of inflow) Penter-of-Mass det. time= 52.6 min (810.4 - 757.8) Pulg-Flow detention time= 52.6 min (810.4 - 757.8) /olume Invert Avail.Storage Storage Description 1.43.64 cf Overall x 40.0% Voids Device Routing Invert Outlet Devices 21.00' 809.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98	Discarde 2=Exfi 2rimary (1=Brown nflow Areanflow Dutflow Discarded	d OutFlow M litration (Co DutFlow Ma: ad-Crested I S sa = 0.1 = 1.1 = 0.1 d = 0.1	Max=0.15 cfs introls 0.15 c x=0.00 cfs (Rectangular ummary fo 409 ac,100.0 16 cfs (@ 12 15 cfs (@ 12	2.410 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 210.00' fs @ 12.62 hrs HW=220.30' (Free Discharge) cfs) @ 0.00 hrs HW=219.00' (Free Discharge) ar Weir (Controls 0.00 cfs) for Pond 19P: STONE RECHARGE TRENCH .00% Impervious, Inflow Depth = 2.77" for 2-yr event
	2=Exfi	iltration (Co OutFlow Mail ad-Crested I Sizea = 0.4 = 1.1 = 0.1 d = 0.1	ontrols 0.15 c x=0.00 cfs @ Rectangular ummary fo 409 ac,100.0 16 cfs @ 12 15 cfs @ 12	cfs) @ 0.00 hrs HW=219.00' (Free Discharge) ar Weir (Controls 0.00 cfs) for Pond 19P: STONE RECHARGE TRENCH .00% Impervious, Inflow Depth = 2.77" for 2-yr event
Image: Control of the second	nflow Are nflow Dutflow Discarded	ad-Crested I S a = 0.4 = 1.1 = 0.1 d = 0.1	Rectangular ummary fo 409 ac,100.0 16 cfs @ 12 15 cfs @ 12	r Weir (Controls 0.00 cfs) for Pond 19P: STONE RECHARGE TRENCH .00% Impervious, Inflow Depth = 2.77" for 2-yr event
nflow Area = 0.409 ac,100.00% Impervious, Inflow Depth = 2.77" for 2-yr event nflow = 1.16 cfs @ 12.09 hrs, Volume= 0.094 af Dutflow = 0.15 cfs @ 12.62 hrs, Volume= 0.094 af Discarded = 0.15 cfs @ 12.62 hrs, Volume= 0.094 af Discarded = 0.15 cfs @ 12.62 hrs, Volume= 0.094 af Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= Peak Elev= 220.30' @ 12.62 hrs Surf.Area= 2,427 sf Storage= 1,261 cf Plug-Flow detention time= 52.7 min calculated for 0.094 af (100% of inflow) Peaker Peaker Center-of-Mass det. time= 52.6 min (810.4 - 757.8) Primary 1.942 cf 3.00'W x 809.00'L x 2.00'H Prismatoid #1 219.00' 1,942 cf 3.00'W x 809.00'L x 2.00'H Prismatoid 4.854 cf Overall x 40.0% Voids Device Routing Invert Outlet Devices Primary 221.00' 809.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32	nflow Dutflow Discardeo	ea = 0. = 1.1 = 0.1 d = 0.1	409 ac,100.0 16 cfs @ 12 15 cfs @ 12	.00% Impervious, Inflow Depth = 2.77" for 2-yr event
nflow = 1.16 cfs @ 12.09 hrs, Volume= 0.094 af Dutflow = 0.15 cfs @ 12.62 hrs, Volume= 0.094 af Discarded = 0.15 cfs @ 12.62 hrs, Volume= 0.094 af Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.094 af Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 220.30' @ 12.62 hrs Surf.Area= 2,427 sf Storage= 1,261 cf Plug-Flow detention time= 52.7 min calculated for 0.094 af (100% of inflow) Center-of-Mass det. time= 52.6 min (810.4 - 757.8) /olume Invert Avail.Storage Storage Description #1 219.00' 1,942 cf 3.00'W x 809.00'L x 2.00'H Prismatoid 4,854 cf Overall x 40.0% Voids Voids Device Routing Invert Outlet Devices #1 Primary 221.00' 809.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Conducti	nflow Dutflow Discardeo	= 1.1 = 0.1 d = 0.1	16 cfs @ 12 15 cfs @ 12	.00% Impervious, Inflow Depth = 2.77" for 2-yr event 2.09 hrs, Volume= 0.094 af
Outflow = 0.15 cfs @ 12.62 hrs, Volume= 0.094 af, Atten= 87%, Lag= 31.9 min Discarded = 0.15 cfs @ 12.62 hrs, Volume= 0.094 af Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs 0.00 af Peak Elev= 220.30' @ 12.62 hrs Surf.Area= 2,427 sf Storage= 1,261 cf Plug-Flow detention time= 52.7 min calculated for 0.094 af (100% of inflow) Center-of-Mass det. time= 52.6 min (810.4 - 757.8) Volume Invert Avail.Storage Storage Description #1 219.00' 1,942 cf 3.00'W x 809.00'L x 2.00'H Prismatoid 4,854 cf Overall x 40.0% Voids Device Routing Invert Outlet Devices #1 Primary 221.00' 809.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32 #2 Discarded 219.00' 2.410 in/hr Exfiltration over Surface area	Outflow Discardeo	= 0.1 d = 0.1	15 cfs @ 12	2.09 hrs, Volume= 0.094 af
Discarded = 0.15 cfs @ 12.62 hrs, Volume= 0.094 af Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 220.30' @ 12.62 hrs Surf.Area= 2,427 sf Storage= 1,261 cf Plug-Flow detention time= 52.7 min calculated for 0.094 af (100% of inflow) Center-of-Mass det. time= 52.6 min (810.4 - 757.8) Volume Invert Avail.Storage Storage Description #1 219.00' 1,942 cf 3.00'W x 809.00'L x 2.00'H Prismatoid 4.854 cf Overall x 40.0% Voids Device Routing Invert Outlet Devices #1 Primary 221.00' 809.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32 #2 Discarded 219.00' 2.410 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 210.00' Discarded OutFlow Max=0.15 cfs @ 12.62 hrs HW=220.30' (Free Discharge) 2=Exfiltration (Controls 0.15 cfs) Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=219.00' (Free Discharge) -2=Exfige Discharge) -2=Exfiltrexion (Controls 0.1	Discardeo	d = 0.1	5 cfc @ 12	2.62 hrs Volume= 0.094 af Atten= 87% Lag= 31.9 min
Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 220.30' @ 12.62 hrs Surf.Area= 2.427 sf Storage= 1,261 cf Plug-Flow detention time= 52.7 min calculated for 0.094 af (100% of inflow) Center-of-Mass det. time= 52.6 min (810.4 - 757.8) /olume Invert Avail.Storage Storage Description #1 219.00' 1,942 cf 3.00'W x 809.00'L x 2.00'H Prismatoid 4,854 cf Overall x 40.0% Voids Device Routing Invert Outlet Devices #1 Primary 221.00' 809.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32 #2 Discarded 219.00' 2.410 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 210.00' Ciscarded OutFlow Max=0.15 cfs @ 12.62 hrs HW=220.30' (Free Discharge) -2=Exfiltration (Controls 0.15 cfs)	Primary		പാപാധ്വ	2.62 hrs, Volume= 0.094 af
Peak Elev ² 220.30' @ 12.62 hrs Surf.Area= 2,427 sf Storage= 1,261 cf Plug-Flow detention time= 52.7 min calculated for 0.094 af (100% of inflow) Penter-of-Mass det. time= 52.6 min (810.4 - 757.8) /olume Invert Avail.Storage Storage Description #1 219.00' 1,942 cf 3.00'W x 809.00'L x 2.00'H Prismatoid 4,854 cf Overall x 40.0% Voids Device Routing Invert Outlet Devices #1 Primary 221.00' 809.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32 #2 Discarded 219.00' 2.410 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 210.00' Discarded OutFlow Max=0.15 cfs @ 12.62 hrs HW=220.30' (Free Discharge) 2=Exfiltration (Controls 0.15 cfs) Primary OutFlow Max=0.00 cfs @ 0.00 hrs		= 0.0		
Center-of-Mass det. time= 52.6 min (810.4 - 757.8) /olume Invert Avail.Storage Storage Description #1 219.00' 1,942 cf 3.00'W x 809.00'L x 2.00'H Prismatoid 4,854 cf Overall x 40.0% Voids Device Routing Invert Outlet Devices #1 Primary 221.00' 809.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32 #2 Discarded 219.00' 2.410 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 210.00' Discarded OutFlow Max=0.15 cfs 12.62 hrs HW=220.30' (Free Discharge) 2=Exfiltration (Controls 0.15 cfs) 0.00 hrs HW=219.00' (Free Discharge)				
#1 219.00' 1,942 cf 3.00'W x 809.00'L x 2.00'H Prismatoid 4,854 cf Overall x 40.0% Voids Device Routing Invert Outlet Devices #1 Primary 221.00' 809.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32 #2 Discarded 219.00' 2.410 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 210.00' Discarded OutFlow Max=0.15 cfs @ 12.62 hrs HW=220.30' (Free Discharge) Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=219.00' (Free Discharge)	Center-of	-Mass det. tir	me= 52.6 mi	in (810.4 - 757.8)
4,854 cf Overall x 40.0% Voids Device Routing Invert Outlet Devices #1 Primary 221.00' 809.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32 #2 Discarded 219.00' 2.410 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 210.00' Discarded OutFlow Max=0.15 cfs @ 12.62 hrs HW=220.30' (Free Discharge) = 2=Exfiltration (Controls 0.15 cfs) @ 0.00 hrs HW=219.00' (Free Discharge)				
#1 Primary 221.00' 809.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 #2 Discarded 219.00' 2410 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 210.00' Discarded OutFlow Max=0.15 cfs @ 12.62 hrs HW=220.30' (Free Discharge) -2=Exfiltration (Controls 0.15 cfs) @ 10.00 hrs HW=219.00' (Free Discharge)	#1	219.00	1,94	
Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 #2 Discarded 219.00' 2.410 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 210.00' Discarded OutFlow Max=0.15 cfs @ 12.62 hrs HW=220.30' (Free Discharge) —2=Exfiltration (Controls 0.15 cfs) @ 0.00 hrs HW=219.00' (Free Discharge)		Routing		
3.30 3.31 3.32 #2 Discarded 219.00' 2.410 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 210.00' Discarded OutFlow Max=0.15 cfs @ 12.62 hrs HW=220.30' (Free Discharge) ←2=Exfiltration (Controls 0.15 cfs) Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=219.00' (Free Discharge)	#1	Primary	221.00'	Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00
 #2 Discarded 219.00' 2.410 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 210.00' Discarded OutFlow Max=0.15 cfs @ 12.62 hrs HW=220.30' (Free Discharge) —2=Exfiltration (Controls 0.15 cfs) Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=219.00' (Free Discharge) 				
Discarded OutFlow Max=0.15 cfs @ 12.62 hrs HW=220.30' (Free Discharge) C=2=Exfiltration (Controls 0.15 cfs) Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=219.00' (Free Discharge)	#2	Discarded	219.00'	2.410 in/hr Exfiltration over Surface area
2=Exfiltration (Controls 0.15 cfs) Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=219.00' (Free Discharge)				Conductivity to Groundwater Elevation = 210.00'

6842-Post Type III 24-hr 2-yr Rainfall=3.00" Prepared by {enter your company name here} Every CAD® 10 10-3a, s/n 03590, © 2020 Every CAD Software Solutions LLC Page 25	6842-Post Type III 24-hr 2-yr Rainfall=3.00" Prepared by {enter your company name here} HydroCAD® 10 10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC. Page 26
Primary OutFlow Max=3.68 cfs @ 12.09 hrs HW=216.40' (Free Discharge)	Peak Elev= 217.15' @ 12.09 hrs Flood Elev= 219.50'
Summary for Pond 23P: CB-1 Inflow Area = 0.307 ac, 83.76% Impervious, Inflow Depth = 2.25" for 2-yr event Inflow = 0.77 cfs @ 12.09 hrs, Volume= 0.058 af Outflow = 0.77 cfs @ 12.09 hrs, Volume= 0.058 af Outflow = 0.77 cfs @ 12.09 hrs, Volume= 0.058 af, Atten= 0%, Lag= 0.0 min Primary = 0.77 cfs @ 12.09 hrs, Volume= 0.058 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.13' @ 12.09 hrs Flood Elev= 218.60' Peak Elev= 218.60'	Device Routing Invert Outlet Devices #1 Primary 216.50' 12.0" Round Culvert L = 38.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert = 216.50' / 215.40' S = 0.0289 '/' Cc= 0.900 n = 0.013, Flow Area = 0.79 sf Primary OutFlow Max=1.15 cfs @ 12.09 hrs HW=217.14' (Free Discharge) Image: Controls 1.15 cfs @ 2.16 fps)

Def 10.10-3a is/n 03590 @ 2020 HydroCAD Software Solutions LLC Page 28 Routing Invert Outlet Devices Primary 215.10' 12.0" Round Culvert L = 160.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.10' / 214.30' S = 0.0050 '/' Cc= 0.900 n = 0.013, Flow Area = 0.79 sf OutFlow Max=1.42 cfs @ 12.09 hrs HW=215.85' (Free Discharge) Ivert (Barrel Controls 1.42 cfs @ 3.13 fps) Summary for Pond 29P: CB-21 ea = 0.123 ac,100.00% Impervious, Inflow Depth = 2.77" for 2-yr event = 0.35 cfs @ 12.09 hrs, Volume= 0.028 af = 0.35 cfs @ 12.09 hrs, Volume= 0.028 af = 0.35 cfs @ 12.09 hrs, Volume= 0.028 af by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs ver 216.53' @ 12.09 hrs eve 219.20' Routing Invert Outlet Devices Primary 216.20' 12.0" Round Culvert L = 26.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert = 216.20' / 215.70' S = 0.0192 '/ Cc= 0.900 n= 0.013. Flow Area = 0.79 sf
L= 160.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.10' / 214.30' S= 0.0050 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf OutFlow Max=1.42 cfs @ 12.09 hrs HW=215.85' (Free Discharge) Ivert (Barrel Controls 1.42 cfs @ 3.13 fps) Summary for Pond 29P: CB-21 rea = 0.123 ac,100.00% Impervious, Inflow Depth = 2.77" for 2-yr event = 0.35 cfs @ 12.09 hrs, Volume= 0.028 af = 0.35 cfs @ 12.09 hrs, Volume= 0.028 af = 0.35 cfs @ 12.09 hrs, Volume= 0.028 af by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs ev= 216.53' @ 12.09 hrs ev= 219.20' Routing Invert Outlet Devices Primary 216.20' Round Culvert L= 26.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.20' / 215.70'
Ivert (Barrel Controls 1.42 cfs @ 3.13 fps) Summary for Pond 29P: CB-21 rea = 0.123 ac,100.00% Impervious, Inflow Depth = 2.77" for 2-yr event = 0.35 cfs @ 12.09 hrs, Volume= 0.028 af = 0.35 cfs @ 12.09 hrs, Volume= 0.028 af = 0.35 cfs @ 12.09 hrs, Volume= 0.028 af by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs 0.028 af by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs 0.209 ev= 219.20' Invert Outlet Devices Primary 216.20' 12.0" Round Culvert L= 26.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.20' / 215.70' S= 0.0192 '/' Cc= 0.900
rea = 0.123 ac,100.00% Impervious, Inflow Depth = 2.77" for 2-yr event = 0.35 cfs @ 12.09 hrs, Volume= 0.028 af = 0.35 cfs @ 12.09 hrs, Volume= 0.028 af, Atten= 0%, Lag= 0.0 min = 0.35 cfs @ 12.09 hrs, Volume= 0.028 af by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs ev= 216.53' @ 12.09 hrs ev= 219.20' Routing Invert Outlet Devices Primary 216.20' 12.0" Round Culvert L= 26.0' CPP, projecting, no headwall, Ke= 0.900 Inter / Outlet Invert= 216.20' / 215.70' S= 0.0192 '/' Cc= 0.900
= 0.35 cfs @ 12.09 hrs, Volume= 0.028 af = 0.35 cfs @ 12.09 hrs, Volume= 0.028 af, Atten= 0%, Lag= 0.0 min = 0.35 cfs @ 12.09 hrs, Volume= 0.028 af by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs ev= 216.53' @ 12.09 hrs ev= 219.20' Routing Invert Primary 216.20' 12.0'' Round Culvert L= 26.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.20' / 215.70' S= 0.0192 '/' Cc= 0.900
Routing Invert Outlet Devices Primary 216.20' 12.0" Round Culvert L = 26.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.20' / 215.70' S = 0.0192 '/' Cc= 0.900
Primary 216.20' 12.0" Round Culvert L= 26.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.20' / 215.70' S= 0.0192 '/'
n= 0.013, Flow Area= 0.79 Si
OutFlow Max=0.34 cfs @ 12.09 hrs HW=216.52' (Free Discharge) Ivert (Inlet Controls 0.34 cfs @ 1.53 fps)
Summary for Pond 30P: DMH-15
rea = 0.637 ac,100.00% Impervious, Inflow Depth = 2.77" for 2-yr event = 1.81 cfs @ 12.09 hrs, Volume= 0.147 af = 1.81 cfs @ 12.09 hrs, Volume= 0.147 af, Atten= 0%, Lag= 0.0 min = 1.81 cfs @ 12.09 hrs, Volume= 0.147 af by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs ev= 214.96' @ 12.09 hrs ev= 219.80'
Routing Invert Outlet Devices
Primary 214.20' 15.0" Round Culvert L= 250.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 214.20' / 212.90' S= 0.0052 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf OutFlow Max=1.76 cfs @ 12.09 hrs HW=214.94' (Free Discharge)

6842-Post Type III 24-hr 2-yr Rainfall=3.00" Prepared by {enter your company name here} HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 30
Flood Elev= 218.50' Device Routing Invert Outlet Devices
#1 Primary 215.90' 12.0" Round Culvert L= 20.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.90' / 215.70' S= 0.0100 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf Primary OutFlow Max=0.62 cfs @ 12.09 hrs HW=216.35' (Free Discharge) *1=Culvert (Inlet Controls 0.62 cfs @ 1.80 fps)

6842-Post Type III 24-hr 2-yr Rainfall=3.00" Prepared by {enter your company name here}	6842-Post Type III 24-hr 2-yr Rainfall=3.00" Prepared by {enter your company name here}
HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 31	HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 32
Summary for Pond 36P: DMH-7	Device Routing Invert Outlet Devices #1 Primary 232.20' 12.0" Round Culvert
Inflow Area = 0.323 ac,100.00% Impervious, Inflow Depth = 2.77" for 2-yr event Inflow = 0.92 cfs @ 12.09 hrs, Volume= 0.074 af Outflow = 0.92 cfs @ 12.09 hrs, Volume= 0.074 af, Atten= 0%, Lag= 0.0 min Primary = 0.92 cfs @ 12.09 hrs, Volume= 0.074 af	L= 15.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 232.20' / 231.70' S= 0.0333 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.56' @ 12.09 hrs	Primary OutFlow Max=0.12 cfs @ 12.09 hrs HW=232.39' (Free Discharge) ↓1=Culvert (Inlet Controls 0.12 cfs @ 1.16 fps)
Flood Elev= 219.80'	Summary for Pond 39P: CB-16
Device Routing Invert Outlet Devices	Inflow Area = 0.046 ac,100.00% Impervious, Inflow Depth = 2.77" for 2-yr event
#1 Primary 216.00' 12.0" Round Culvert L= 220.0' CPP, projecting, no headwall, Ke= 0.900	Inflow = 0.13 cfs @ 12.09 hrs, Volume= 0.011 af Outflow = 0.13 cfs @ 12.09 hrs, Volume= 0.011 af, Atten= 0%, Lag= 0.0 min
Inlet / Outlet Invert= 216.00' / 214.80' S= 0.0055 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf	Primary = 0.13 cfs @ 12.09 hrs , Volume= 0.011 af
Primary OutFlow Max=0.89 cfs @ 12.09 hrs HW=216.55' (Free Discharge)	Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 232.40' @ 12.09 hrs Flood Elev= 236.20'
Summary for Pond 37P: DMH-10	Device Routing Invert Outlet Devices
Inflow Area = 0.446 ac,100.00% Impervious, Inflow Depth = 2.77" for 2-yr event Inflow = 1.26 cfs @ 12.09 hrs, Volume= 0.103 af Outflow = 1.26 cfs @ 12.09 hrs, Volume= 0.103 af, Atten= 0%, Lag= 0.0 min	#1 Primary 232.20' 12.0" Round Culvert L= 15.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 232.20' / 231.70' S= 0.0333 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Primary = 1.26 cfs @ 12.09 hrs, Volume= 0.103 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 218.71' @ 12.09 hrs 12.09 hrs	Primary OutFlow Max=0.13 cfs @ 12.09 hrs HW=232.39′ (Free Discharge) └─1=Culvert (Inlet Controls 0.13 cfs @ 1.18 fps)
Flood Elev= 222.20'	Summary for Pond 52P: CB-17
Device Routing Invert Outlet Devices #1 Primary 218.10' 15.0" Round Culvert L = 122.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 218.10' / 214.50' S= 0.0295 '/' Cc= 0.900	Inflow Area = 0.081 ac,100.00% Impervious, Inflow Depth = 2.77" for 2-yr event Inflow = 0.23 cfs @ 12.09 hrs, Volume= 0.019 af Outflow = 0.23 cfs @ 12.09 hrs, Volume= 0.019 af, Atten= 0%, Lag= 0.0 min Primary = 0.23 cfs @ 12.09 hrs, Volume= 0.019 af
n= 0.013, Flow Area= 1.23 sf Primary OutFlow Max=1.23 cfs @ 12.09 hrs HW=218.70' (Free Discharge) Lagrandian State of the state of th	Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 247.66' @ 12.09 hrs Flood Elev= 251.40'
Summary for Pond 38P: CB-15	Device Routing Invert Outlet Devices
Inflow Area = 0.043 ac,100.00% Impervious, Inflow Depth = 2.77" for 2-yr event Inflow = 0.12 cfs @ 12.09 hrs, Volume= 0.010 af Outflow = 0.12 cfs @ 12.09 hrs, Volume= 0.010 af, Atten= 0%, Lag= 0.0 min	#1 Primary 247.40' 12.0" Round Culvert L= 18.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 247.40' / 246.50' S= 0.0500 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Primary = 0.12 cfs @ 12.09 hrs, Volume= 0.010 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 232.39' @ 12.09 hrs Flood Elev= 236.20' Flood Elev= 236.20' 12.09 hrs 12.09 hrs	Primary OutFlow Max=0.22 cfs @ 12.09 hrs HW=247.66' (Free Discharge)

6842-Post Type III 24-hr 2-yr Rainfall=3.00" Prepared by {enter your company name here}	6842-Post Type III 24-hr 2-yr Rainfall=3.00" Prepared by {enter your company name here}
HydroCAD® 10.10-3a ś/n 03590 © 2020 HydroCAD Software Solutions LLC Page 33	HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 34
Summary for Pond 53P: CB-18	Device Routing Invert Outlet Devices
Inflow Area = 0.080 ac,100.00% Impervious, Inflow Depth = 2.77" for 2-yr event Inflow = 0.23 cfs @ 12.09 hrs, Volume= 0.018 af Outflow = 0.23 cfs @ 12.09 hrs, Volume= 0.018 af Primary = 0.23 cfs @ 12.09 hrs, Volume= 0.018 af	#1 Primary 239.90' 12.0" Round Culvert L= 110.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 239.90' / 231.70' S= 0.0745 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 247.66' @ 12.09 hrs	Primary OutFlow Max=0.44 cfs @ 12.09 hrs HW=240.28' (Free Discharge) ↑_1=Culvert (Inlet Controls 0.44 cfs @ 1.65 fps)
Flood Elev= 251.40'	Summary for Pond 58P: CB-13
Device Routing Invert Outlet Devices #1 Primary 247.40' 12.0" Round Culvert L= 18.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 247.40' / 246.50' S= 0.0500 '/' Cc= 0.900 n= 0.013. Flow Area= 0.79 sf	Inflow Area = 0.060 ac,100.00% Impervious, Inflow Depth = 2.77" for 2-yr event Inflow = 0.17 cfs @ 12.09 hrs, Volume= 0.014 af Outflow = 0.17 cfs @ 12.09 hrs, Volume= 0.014 af, Atten= 0%, Lag= 0.0 min Primary = 0.17 cfs @ 12.09 hrs, Volume= 0.014 af
Primary OutFlow Max=0.22 cfs @ 12.09 hrs HW=247.66' (Free Discharge)	Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 219.13' @ 12.09 hrs Flood Elev= 221.90'
Summary for Pond 54P: DMH-13	Device Routing Invert Outlet Devices
Inflow Area = 0.161 ac,100.00% Impervious, Inflow Depth = 2.77" for 2-yr event Inflow = 0.46 cfs @ 12.09 hrs, Volume= 0.037 af Outflow = 0.46 cfs @ 12.09 hrs, Volume= 0.037 af, Atten= 0%, Lag= 0.0 min Primary = 0.46 cfs @ 12.09 hrs, Volume= 0.037 af	#1 Primary 218.90' 12.0" Round Culvert L= 15.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 218.90' / 218.20' S= 0.0467 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Primary = 0.46 cfs @ 12.09 hrs, Volume= 0.037 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 246.78' @ 12.09 hrs	Primary OutFlow Max=0.17 cfs @ 12.09 hrs HW=219.12' (Free Discharge)
Flood Elev= 250.20'	Summary for Pond 61P: DMH-11
Device Routing Invert Outlet Devices #1 Primary 246.40' 12.0" Round Culvert L= 85.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 246.40' / 240.00' S= 0.0753 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf	Inflow Area = 0.249 ac,100.00% Impervious, Inflow Depth = 2.77" for 2-yr event Inflow = 0.71 cfs @ 12.09 hrs, Volume= 0.058 af Outflow = 0.71 cfs @ 12.09 hrs, Volume= 0.058 af, Atten= 0%, Lag= 0.0 min Primary = 0.71 cfs @ 12.09 hrs, Volume= 0.058 af
Primary OutFlow Max=0.44 cfs @ 12.09 hrs HW=246.78' (Free Discharge)	Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 232.09' @ 12.09 hrs Flood Elev= 235.70'
Summary for Pond 56P: DMH-12	Device Routing Invert Outlet Devices
Inflow Area = 0.161 ac,100.00% Impervious, Inflow Depth = 2.77" for 2-yr event Inflow = 0.46 cfs @ 12.09 hrs, Volume= 0.037 af Outflow = 0.46 cfs @ 12.09 hrs, Volume= 0.037 af, Atten= 0%, Lag= 0.0 min Primary = 0.46 cfs @ 12.09 hrs, Volume= 0.037 af	#1 Primary 231.60' 12.0" Round Culvert L= 198.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 231.60' / 218.20' S= 0.0677 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 240.28' @ 12.09 hrs Flood Elev= 244.00'	Primary OutFlow Max=0.69 cfs @ 12.09 hrs HW=232.08' (Free Discharge) —1=Culvert (Inlet Controls 0.69 cfs @ 1.86 fps)

6842-Post Type III 24-hr 2-yr Rainfall=3.00" Prepared by {enter your company name here}	6842-Post Type III 24-hr 2-yr Rainfall=3.00" Prepared by {enter your company name here}
HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 35	HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 36
Summary for Pond 62P: CB-14	Device Routing Invert Outlet Devices
Inflow Area = 0.136 ac,100.00% Impervious, Inflow Depth = 2.77" for 2-yr event Inflow = 0.39 cfs @ 12.09 hrs, Volume= 0.031 af Outflow = 0.39 cfs @ 12.09 hrs, Volume= 0.031 af, Atten= 0%, Lag= 0.0 min Primary = 0.39 cfs @ 12.09 hrs, Volume= 0.031 af	#1 Primary 216.00' 12.0" Round Culvert L= 24.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.00' / 215.50' S= 0.0208 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 219.25' @ 12.09 hrs	Primary OutFlow Max=0.37 cfs @ 12.09 hrs HW=216.34' (Free Discharge)
Flood Elev= 221.90'	Summary for Pond 67P: CB-7
Device Routing Invert Outlet Devices #1 Primary 218.90' 12.0" Round Culvert L= 15.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 218.90' / 218.20' S= 0.0467 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf	Inflow Area = 0.093 ac,100.00% Impervious, Inflow Depth = 2.77" for 2-yr event Inflow = 0.26 cfs @ 12.09 hrs, Volume= 0.021 af Outflow = 0.26 cfs @ 12.09 hrs, Volume= 0.021 af, Atten= 0%, Lag= 0.0 min Primary = 0.26 cfs @ 12.09 hrs, Volume= 0.021 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Primary OutFlow Max=0.37 cfs @ 12.09 hrs HW=219.24' (Free Discharge) └─1=Culvert (Inlet Controls 0.37 cfs @ 1.57 fps)	Peak Elev= 216.28' @ 12.09 hrs Flood Elev= 219.00'
Summary for Pond 63P: DMH-4	Device Routing Invert Outlet Devices
Inflow Area = 1.336 ac,100.00% Impervious, Inflow Depth = 2.77" for 2-yr event Inflow = 3.79 cfs @ 12.09 hrs, Volume= 0.308 af Outflow = 3.79 cfs @ 12.09 hrs, Volume= 0.308 af Difference 0.308 af 0.008 af Atten= 0%, Lag= 0.0 min	#1 Primary 216.00' 12.0" Round Culvert L= 24.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.00' / 215.50' S= 0.0208 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Primary = 3.79 cfs @ 12.09 hrs, Volume= 0.308 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 215.19' @ 12.09 hrs	Primary OutFlow Max=0.26 cfs @ 12.09 hrs HW=216.28' (Free Discharge) └─1=Culvert (Inlet Controls 0.26 cfs @ 1.42 fps)
Flood Elev= 222.20'	Summary for Pond 68P: DMH-9
Device Routing Invert Outlet Devices #1 Primary 214.10' 24.0" Round Culvert L = 35.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 214.10' / 214.00' S= 0.0029 '/' Cc= 0.900 n= 0.013, Flow Area= 3.14 sf	Inflow Area = 0.909 ac, 78.68% Impervious, Inflow Depth = 2.15" for 2-yr event Inflow = 2.17 cfs @ 12.09 hrs, Volume= 0.163 af Outflow = 2.17 cfs @ 12.09 hrs, Volume= 0.163 af, Atten= 0%, Lag= 0.0 min Primary = 2.17 cfs @ 12.09 hrs, Volume= 0.163 af
Primary OutFlow Max=3.69 cfs @ 12.09 hrs HW=215.17' (Free Discharge) - 1=Culvert (Barrel Controls 3.69 cfs @ 3.12 fps)	Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.94' @ 12.09 hrs Flood Elev= 219.40'
Summary for Pond 66P: CB-6	Device Routing Invert Outlet Devices
Inflow Area = 0.134 ac,100.00% Impervious, Inflow Depth = 2.77" for 2-yr event Inflow = 0.38 cfs @ 12.09 hrs, Volume= 0.031 af Outflow = 0.38 cfs @ 12.09 hrs, Volume= 0.031 af, Atten= 0%, Lag= 0.0 min Primary = 0.38 cfs @ 12.09 hrs, Volume= 0.031 af	#1 Primary 216.10' 15.0'' Round Culvert L= 79.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.10' / 215.40' S= 0.0089 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.35' @ 12.09 hrs Flood Elev= 219.00'	Primary OutFlow Max=2.12 cfs @ 12.09 hrs HW=216.93' (Free Discharge) -1=Culvert (Inlet Controls 2.12 cfs @ 2.45 fps)

6842-Post Type III 24-hr 2-yr Rainfall=3.00" Prepared by {enter your company name here}	6842-Post Type III 24-hr 2-yr Rainfall=3.00" Prepared by {enter your company name here}
HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 37	HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 38
Summary for Pond 69P: CB-11	Device Routing Invert Outlet Devices
Inflow Area = 0.107 ac,100.00% Impervious, Inflow Depth = 2.77" for 2-yr event Inflow = 0.30 cfs @ 12.09 hrs, Volume= 0.025 af Outflow = 0.30 cfs @ 12.09 hrs, Volume= 0.025 af, Atten= 0%, Lag= 0.0 min Primary = 0.30 cfs @ 12.09 hrs, Volume= 0.025 af	#1 Primary 215.50' 12.0'' Round Culvert L= 32.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.50' / 215.30' S= 0.0062 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.63' @ 12.09 hrs	Primary OutFlow Max=0.48 cfs @ 12.09 hrs HW=215.91' (Free Discharge)
Flood Elev= 219.30'	Summary for Pond 72P: CB-9
Device Routing Invert Outlet Devices #1 Primary 216.30' 12.0" Round Culvert L = 14.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.30' / 216.20' S= 0.0071 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf	Inflow Area = 0.165 ac,100.00% Impervious, Inflow Depth = 2.77" for 2-yr event Inflow = 0.47 cfs @ 12.09 hrs, Volume= 0.038 af Outflow = 0.47 cfs @ 12.09 hrs, Volume= 0.038 af, Atten= 0%, Lag= 0.0 min Primary = 0.47 cfs @ 12.09 hrs, Volume= 0.038 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Primary OutFlow Max=0.29 cfs @ 12.09 hrs HW=216.62' (Free Discharge) —1=Culvert (Barrel Controls 0.29 cfs @ 2.02 fps)	Peak Elev= 215.91' @ 12.09 hrs Flood Elev= 218.50'
Summary for Pond 70P: CB-12	Device Routing Invert Outlet Devices
Inflow Area = 0.802 ac, 75.84% Impervious, Inflow Depth = 2.07" for 2-yr event Inflow = 1.87 cfs @ 12.09 hrs, Volume= 0.138 af Outflow = 1.87 cfs @ 12.09 hrs, Volume= 0.138 af, Atten= 0%, Lag= 0.0 min Primary = 1.87 cfs @ 12.09 hrs, Volume= 0.138 af	#1 Primary 215.50' 12.0" Round Culvert L= 37.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.50' / 215.30' S= 0.0054 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 217.14' @ 12.09 hrs	Primary OutFlow Max=0.46 cfs @ 12.09 hrs HW=215.91' (Free Discharge)
Flood Elev= 219.30'	Summary for Pond 73P: DMH-6
Device Routing Invert Outlet Devices #1 Primary 216.30' 15.0'' Round Culvert L= 14.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.30' / 216.20' S= 0.0071 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf	Inflow Area = 0.340 ac,100.00% Impervious, Inflow Depth = 2.77" for 2-yr event Inflow = 0.97 cfs @ 12.09 hrs, Volume= 0.079 af Outflow = 0.97 cfs @ 12.09 hrs, Volume= 0.079 af, Atten= 0%, Lag= 0.0 min Primary = 0.97 cfs @ 12.09 hrs, Volume= 0.079 af Deviting hu Step lad method. Time Concerts 0.00.72.00 hrs, dts 0.05 hrs 0.07 hrs
Primary OutFlow Max=1.83 cfs @ 12.09 hrs HW=217.13' (Free Discharge)	Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 215.78' @ 12.09 hrs Flood Elev= 219.10'
Summary for Pond 71P: CB-8	Device Routing Invert Outlet Devices
Inflow Area = 0.175 ac,100.00% Impervious, Inflow Depth = 2.77" for 2-yr event Inflow = 0.50 cfs @ 12.09 hrs, Volume= 0.040 af Outflow = 0.50 cfs @ 12.09 hrs, Volume= 0.040 af, Atten= 0%, Lag= 0.0 min Primary = 0.50 cfs @ 12.09 hrs, Volume= 0.040 af	#1 Primary 215.20' 12.0'' Round Culvert L= 52.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.20' / 214.80' S= 0.0077 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 215.92' @ 12.09 hrs Flood Elev= 218.50'	Primary OutFlow Max=0.94 cfs @ 12.09 hrs HW=215.77' (Free Discharge) -1=Culvert (Inlet Controls 0.94 cfs @ 2.03 fps)

6842-Post Type III 24-hr 2-yr Rainfall=3.00"	6842-Post Type III 24-hr 2-yr Rainfall=3.00"
Prepared by {enter your company name here}	Prepared by {enter your company name here}
HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 39	HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 40
Summary for Pond 78P: CB-19	Device Routing Invert Outlet Devices #1 Primary 214.70' 15.0" Round Culvert
Inflow Area = 0.122 ac,100.00% Impervious, Inflow Depth = 2.77" for 2-yr event Inflow = 0.35 cfs @ 12.09 hrs, Volume= 0.028 af Outflow = 0.35 cfs @ 12.09 hrs, Volume= 0.028 af, Atten= 0%, Lag= 0.0 min Primary = 0.35 cfs @ 12.09 hrs, Volume= 0.028 af	L= 67.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 214.70' / 214.20' S= 0.0075 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.73' @ 12.09 hrs	Primary OutFlow Max=1.83 cfs @ 12.09 hrs HW=215.46' (Free Discharge) [●] —1=Culvert (Inlet Controls 1.83 cfs @ 2.34 fps)
Flood Elev= 219.00'	Summary for Pond 81P: CB-5
Device Routing Invert Outlet Devices #1 Primary 216.40' 12.0" Round Culvert L= 45.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.40' / 216.10' S= 0.0067 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf Primary OutFlow Max=0.34 cfs @ 12.09 Frs. HW=216.73' (Free Discharge)	Inflow Area = 0.287 ac, 88.82% Impervious, Inflow Depth = 2.45" for 2-yr event Inflow = 0.76 cfs @ 12.09 hrs, Volume= 0.058 af Outflow = 0.76 cfs @ 12.09 hrs, Volume= 0.058 af, Atten= 0%, Lag= 0.0 min Primary = 0.76 cfs @ 12.09 hrs, Volume= 0.058 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.53' @ 12.09 hrs
T-1=Culvert (Barrel Controls 0.34 cfs @ 2.25 fps)	Flood Elev= 219.00'
Summary for Pond 79P: CB-10 Inflow Area = 0.200 ac,100.00% Impervious, Inflow Depth = 2.77" for 2-yr event Inflow = 0.57 cfs @ 12.09 hrs, Volume= 0.046 af Outflow = 0.57 cfs @ 12.09 hrs, Volume= 0.046 af, Atten= 0%, Lag= 0.0 min Primary = 0.57 cfs @ 12.09 hrs, Volume= 0.046 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs 0.057 cfs	Device Routing Invert Outlet Devices #1 Primary 216.00' 12.0" Round Culvert L = 31.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.00' / 215.80' Primary OutFlow Max=0.74 cfs 12.09 hrs HW=216.52' (Free Discharge) Hearel Controls 0.74 cfs 2.61 fps) 12.01 fps)
Peak Elev=216.83 @ 12.09 hrs Flood Elev= 219.00'	Summary for Pond 82P: DMH-3
Device Routing Invert Outlet Devices #1 Primary 216.40' 12.0" Round Culvert L= 17.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.40' / 216.10' S= 0.0176 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf Primary OutFlow Max=0.55 cfs @ 12.09 hrs HW=216.82' (Free Discharge)	Inflow Area = 0.287 ac, 88.82% Impervious, Inflow Depth = 2.45" for 2-yr event Inflow = 0.76 cfs @ 12.09 hrs, Volume= 0.058 af Outflow = 0.76 cfs @ 12.09 hrs, Volume= 0.058 af, Atten= 0%, Lag= 0.0 min Primary = 0.76 cfs @ 12.09 hrs, Volume= 0.058 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.22' @ 12.09 hrs
T-1=Culvert (Inlet Controls 0.55 cfs @ 1.75 fps)	Flood Elev= 218.90'
Summary for Pond 80P: DMH-5	Device Routing Invert Outlet Devices #1 Primary 215.70' 12.0" Round Culvert
Inflow Area = 0.663 ac,100.00% Impervious, Inflow Depth = 2.77" for 2-yr event Inflow = 1.88 cfs @ 12.09 hrs, Volume= 0.153 af Outflow = 1.88 cfs @ 12.09 hrs, Volume= 0.153 af, Atten= 0%, Lag= 0.0 min Primary = 1.88 cfs @ 12.09 hrs, Volume= 0.153 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 215.47" @ Peak Elev= 215.47" @ 12.09 hrs Flood Elev= 220.00' 12.09 hrs	 Primary 215.76 12.0 (CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.70' / 215.30' S= 0.0057 '/ Cc= 0.900 n= 0.013, Flow Area= 0.79 sf Primary OutFlow Max=0.74 cfs @ 12.09 hrs HW=216.21' (Free Discharge) 1=Culvert (Barrel Controls 0.74 cfs @ 2.68 fps)

42-Post Type III 24-hr 2-yr Rainfall=3.00" epared by {enter your company name here} droCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 41	6842-Post Prepared by {enter your company na <u>HydroCAD® 10.10-3a s/n 03590 © 2020 H</u>	
Summary for Link 20L: DP-A low Area = 30.660 ac, 24.72% Impervious, Inflow Depth = 1.02" for 2-yr event	Runoff by SCS	0.00-72.00 hrs, dt=0.05 hrs, 1441 points 5 TR-20 method, UH=SCS, Weighted-CN I+Trans method → Pond routing by Stor-Ind method
low = 13.42 cfs @ 12.17 hrs, Volume= 2.596 af mary = 13.42 cfs @ 12.17 hrs, Volume= 2.596 af, Atten= 0%, Lag= 0.0 min	Subcatchment 9S: APT. BLDG. A	Runoff Area=17,818 sf 100.00% Impervious Runoff Depth=4.20" Tc=6.0 min CN=98 Runoff=1.73 cfs 0.143 af
mary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs	Subcatchment 16S: APT. BLDG. B	Runoff Area=17,818 sf 100.00% Impervious Runoff Depth=4.20" Tc=6.0 min CN=98 Runoff=1.73 cfs 0.143 af
	Subcatchment 18S: APT. BLDG. C	Runoff Area=17,818 sf 100.00% Impervious Runoff Depth=4.20" Tc=6.0 min CN=98 Runoff=1.73 cfs 0.143 af
	Subcatchment 21S: A.1	Runoff Area=20,195 sf 5.87% Impervious Runoff Depth=2.24" Tc=10.0 min CN=78 Runoff=1.05 cfs 0.087 af
	Subcatchment 22S: A.2	Runoff Area=13,850 sf 100.00% Impervious Runoff Depth=4.20" Tc=6.0 min CN=98 Runoff=1.35 cfs 0.111 af
	Subcatchment 23S: A.3	Runoff Area=9,767 sf 100.00% Impervious Runoff Depth=4.20" Tc=6.0 min CN=98 Runoff=0.95 cfs 0.079 af
	Subcatchment 24S: A.4	Runoff Area=5,341 sf 100.00% Impervious Runoff Depth=4.20" Tc=6.0 min CN=98 Runoff=0.52 cfs 0.043 af
	Subcatchment 25S: A.5	Runoff Area=22,426 sf 100.00% Impervious Runoff Depth=4.20" Tc=6.0 min CN=98 Runoff=2.18 cfs 0.180 af
	Subcatchment 26S: B.6	Runoff Area=40,090 sf 22.31% Impervious Runoff Depth=1.85" Tc=6.0 min UI Adjusted CN=73 Runoff=1.93 cfs 0.142 af
	Subcatchment 27S: A.6	Runoff Area=12,567 sf 87.12% Impervious Runoff Depth=3.76" Tc=6.0 min CN=94 Runoff=1.16 cfs 0.090 af
	Subcatchment 28S: B.1	Runoff Area=30,829 sf 0.88% Impervious Runoff Depth=2.16" Tc=6.0 min CN=77 Runoff=1.75 cfs 0.128 af
	Subcatchment 29S: B.2	Runoff Area=13,381 sf 83.76% Impervious Runoff Depth=3.65" Tc=6.0 min CN=93 Runoff=1.22 cfs 0.093 af
	Subcatchment 30S: B.3	Runoff Area=17,060 sf 95.72% Impervious Runoff Depth=4.09" Tc=6.0 min CN=97 Runoff=1.64 cfs 0.133 af
	Subcatchment 31S: B.4	Runoff Area=17,060 sf 95.72% Impervious Runoff Depth=4.09" Tc=6.0 min CN=97 Runoff=1.64 cfs 0.133 af
	Subcatchment 32S: B.5	Runoff Area=24,627 sf 67.38% Impervious Runoff Depth=3.14" Tc=6.0 min CN=88 Runoff=2.00 cfs 0.148 af
	Subcatchment 33S: B.7	Runoff Area=290,511 sf 2.55% Impervious Runoff Depth=1.70" Tc=30.0 min CN=71 Runoff=7.30 cfs 0.947 af

6842-Post	Type III 24-hr 10-yr Rainfall=4.44"	6842-Post Type III 24-hr 10-yr Rainfall=4.44"
Prepared by {enter your company HydroCAD® 10.10-3a s/n 03590 © 202		Prepared by {enter your company name here} HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 44
		- · · · · · · · · · · · · · · · · · · ·
Subcatchment 34S: B.8	Runoff Area=12,484 sf 88.82% Impervious Runoff Depth=3.87" Tc=6.0 min CN=95 Runoff=1.17 cfs 0.092 af	Subcatchment 52S: B.9 Runoff Area=15,018 sf 80.72% Impervious Runoff Depth=3.54" Tc=6.0 min CN=92 Runoff=1.34 cfs 0.102 af
Subcatchment 35S: C.1	Runoff Area=236,308 sf 9.34% Impervious Runoff Depth=2.16" Tc=20.0 min UI Adjusted CN=77 Runoff=9.18 cfs 0.977 af	Pond 4P: Constructed Stormwater Wetland Peak Elev=214.32' Storage=13,989 cf Inflow=7.09 cfs 0.596 af Outflow=0.54 cfs 0.595 af
Subcatchment 36S: C.2	Runoff Area=22,516 sf 83.62% Impervious Runoff Depth=3.65" Tc=6.0 min CN=93 Runoff=2.05 cfs 0.157 af	Pond 5P: Wet Basin Peak Elev=215.03' Storage=11,160 cf Inflow=11.71 cfs 1.451 af
Subcatchment 37S: C.3	Runoff Area=12,429 sf 61.75% Impervious Runoff Depth=3.04" Tc=6.0 min CN=87 Runoff=0.98 cfs 0.072 af	Outflow=8.19 cfs 1.451 af Pond 7P: Constructed Stormwater Wetland Peak Elev=215.37' Storage=6,222 cf Inflow=18.71 cfs 2.191 af
Subcatchment 38S: C.4	Runoff Area=4,655 sf 100.00% Impervious Runoff Depth=4.20" Tc=6.0 min CN=98 Runoff=0.45 cfs 0.037 af	Outflow=17.15 cfs 2.191 af Pond 12P: STONE RECHARGE TRENCH Peak Elev=221.00' Storage=1,942 cf Inflow=1.73 cfs 0.143 af Discarded=0.17 cfs 0.137 af Primary=0.69 cfs 0.006 af Outflow=0.85 cfs 0.143 af
Subcatchment 39S: C.5	Runoff Area=5,857 sf 100.00% Impervious Runoff Depth=4.20" Tc=6.0 min CN=98 Runoff=0.57 cfs 0.047 af	Pond 17P: STONE RECHARGE TRENCH Peak Elev=221.00' Storage=1,942 cf Inflow=1.73 cfs 0.143 af Discarded=0.17 cfs 0.137 af Primary=0.69 cfs 0.006 af Outflow=0.85 cfs 0.143 af
Subcatchment 40S: C.6	Runoff Area=4,047 sf 100.00% Impervious Runoff Depth=4.20" Tc=6.0 min CN=98 Runoff=0.39 cfs 0.033 af	Pond 19P: STONE RECHARGE TRENCH Peak Elev=221.00' Storage=1,942 cf Inflow=1.73 cfs 0.143 af Discarded=0.17 cfs 0.137 af Primary=0.69 cfs 0.006 af Outflow=0.85 cfs 0.143 af
Subcatchment 41S: C.7	Runoff Area=7,188 sf 100.00% Impervious Runoff Depth=4.20" Tc=6.0 min CN=98 Runoff=0.70 cfs 0.058 af	Pond 21P: CB-4 12.0" Round Culvert n=0.013 L=37.0' S=0.0054 1/ Outflow=1.34 cfs 0.102 af
Subcatchment 42S: C.8	Runoff Area=7,639 sf 100.00% Impervious Runoff Depth=4.20" Tc=6.0 min CN=98 Runoff=0.74 cfs 0.061 af	Pond 22P: DMH-2 18.0" Round Culvert n=0.013 L=37.0 3=0.0054 / Ottilow=1.34 Cis 0.102 at Peak Elev=216.84' Inflow=6.00 cfs 0.461 af 18.0" Round Culvert n=0.013 L=101.0' S=0.0050 // Outflow=6.00 cfs 0.461 af
Subcatchment 43S: C.9	Runoff Area=8,732 sf 100.00% Impervious Runoff Depth=4.20" Tc=6.0 min CN=98 Runoff=0.85 cfs 0.070 af	Pond 23P: CB-1 Peak Elev=216.29' Inflow=1.22 cfs 0.093 af
Subcatchment 44S: C.10	Runoff Area=5,326 sf 100.00% Impervious Runoff Depth=4.20" Tc=6.0 min CN=98 Runoff=0.52 cfs 0.043 af	Pond 24P: CB-2 Peak Elev=217.01' Inflow=1.64 cfs 0.133 af 42.01'' Durind Output and Output an
Subcatchment 45S: C.11	Runoff Area=2,631 sf 100.00% Impervious Runoff Depth=4.20" Tc=6.0 min CN=98 Runoff=0.26 cfs 0.021 af	Pond 25P: CB-3 Peak Elev=217.44' Inflow=2.00 cfs 0.148 af
Subcatchment 46S: C.12	Runoff Area=5,910 sf 100.00% Impervious Runoff Depth=4.20" Tc=6.0 min CN=98 Runoff=0.57 cfs 0.048 af	12.0" Round Culvert n=0.013 L=38.0' S=0.0289 '/' Outflow=2.00 cfs 0.148 af Pond 26P: DMH-1 Peak Elev=216.58' Inflow=4.86 cfs 0.375 af
Subcatchment 47S: C.13	Runoff Area=1,987 sf 100.00% Impervious Runoff Depth=4.20" Tc=6.0 min CN=98 Runoff=0.19 cfs 0.016 af	18.0" Round Culvert n=0.013 L=56.0' S=0.0089 '/' Outflow=4.86 cfs 0.375 af Pond 27P: DCB-22 Peak Elev=216.53' Inflow=2.18 cfs 0.180 af
Subcatchment 48S: C.14	Runoff Area=1,885 sf 100.00% Impervious Runoff Depth=4.20" Tc=6.0 min CN=98 Runoff=0.18 cfs 0.015 af	12.0" Round Culvert n=0.013 L=50.0' S=0.0060 '/' Outflow=2.18 cfs 0.180 af Pond 28P: DMH-16 Peak Elev=216.13' Inflow=2.18 cfs 0.180 af
Subcatchment 49S: C.15	Runoff Area=3,487 sf 100.00% Impervious Runoff Depth=4.20" Tc=6.0 min CN=98 Runoff=0.34 cfs 0.028 af	12.0" Round Culvert n=0.013 L=160.0' S=0.0050 '/' Outflow=2.18 cfs 0.180 af Pond 29P: CB-21 Peak Elev=216.61' Inflow=0.52 cfs 0.043 af
Subcatchment 50S: C.16	Runoff Area=3,508 sf 100.00% Impervious Runoff Depth=4.20"	12.0" Round Culvert n=0.013 L=26.0' S=0.0192 '/' Outflow=0.52 cfs 0.043 af
Subcatchment 51S: D.1	Tc=6.0 min CN=98 Runoff=0.34 cfs 0.028 af Runoff Area=402,771 sf 0.38% Impervious Runoff Depth=1.05" Tc=20.0 min CN=61 Runoff=6.57 cfs 0.806 af	Pond 30P: DMH-15 Peak Elev=215.17' Inflow=2.70 cfs 0.223 af 15.0" Round Culvert n=0.013 L=250.0' S=0.0052 '/' Outflow=2.70 cfs 0.223 af

6842-Post Prepared by {enter your		6842-Post Prepared by {enter
HydroCAD® 10.10-3a s/n 03	3590 © 2020 HydroCAD Software Solutions LLC Page 45	HydroCAD® 10.10-3a
Pond 31P: DMH-14	Peak Elev=214.41' Inflow=6.16 cfs 0.504 af 18.0" Round Culvert n=0.013 L=61.0' S=0.0049 '/' Outflow=6.16 cfs 0.504 af	Pond 67P: CB-7
Pond 32P: CB-20	Peak Elev=216.21' Inflow=1.35 cfs 0.111 af 12.0" Round Culvert n=0.013 L=12.0' S=0.0167 '/' Outflow=1.35 cfs 0.111 af	Pond 68P: DMH-9
Pond 33P: DMH-17	Peak Elev=216.59' Inflow=2.11 cfs 0.169 af 12.0" Round Culvert n=0.013 L=180.0' S=0.0050 '/' Outflow=2.11 cfs 0.169 af	Pond 69P: CB-11
Pond 34P: CB-23	Peak Elev=216.57' Inflow=1.16 cfs 0.090 af 12.0" Round Culvert n=0.013 L=28.0' S=0.0071 '/' Outflow=1.16 cfs 0.090 af	Pond 70P: CB-12
Pond 35P: CB-24	Peak Elev=216.48' Inflow=0.95 cfs 0.079 af 12.0" Round Culvert n=0.013 L=20.0' S=0.0100 '/' Outflow=0.95 cfs 0.079 af	Pond 71P: CB-8
Pond 36P: DMH-7	Peak Elev=216.72' Inflow=1.37 cfs 0.113 af 12.0" Round Culvert n=0.013 L=220.0' S=0.0055 '/' Outflow=1.37 cfs 0.113 af	Pond 72P: CB-9
Pond 37P: DMH-10	Peak Elev=218.87' Inflow=1.89 cfs 0.156 af 15.0" Round Culvert n=0.013 L=122.0' S=0.0295 '/' Outflow=1.89 cfs 0.156 af	Pond 73P: DMH-6
Pond 38P: CB-15	Peak Elev=232.43' Inflow=0.18 cfs 0.015 af 12.0" Round Culvert n=0.013 L=15.0' S=0.0333 '/' Outflow=0.18 cfs 0.015 af	Pond 78P: CB-19
Pond 39P: CB-16	Peak Elev=232.44' Inflow=0.19 cfs 0.016 af 12.0" Round Culvert n=0.013 L=15.0' S=0.0333 '/' Outflow=0.19 cfs 0.016 af	Pond 79P: CB-10
Pond 52P: CB-17	Peak Elev=247.73' Inflow=0.34 cfs 0.028 af 12.0" Round Culvert n=0.013 L=18.0' S=0.0500 '/ Outflow=0.34 cfs 0.028 af	Pond 80P: DMH-5
Pond 53P: CB-18	Peak Elev=247.72' Inflow=0.34 cfs 0.028 af 12.0" Round Culvert n=0.013 L=18.0' S=0.0500 '/' Outflow=0.34 cfs 0.028 af	Pond 81P: CB-5
Pond 54P: DMH-13	Peak Elev=246.87' Inflow=0.68 cfs 0.056 af 12.0" Round Culvert n=0.013 L=85.0' S=0.0753 '/' Outflow=0.68 cfs 0.056 af	Pond 82P: DMH-3
Pond 56P: DMH-12	Peak Elev=240.37' Inflow=0.68 cfs 0.056 af 12.0" Round Culvert n=0.013 L=110.0' S=0.0745 '/' Outflow=0.68 cfs 0.056 af	Link 20L: DP-A
Pond 58P: CB-13	Peak Elev=219.18' Inflow=0.26 cfs 0.021 af 12.0" Round Culvert n=0.013 L=15.0' S=0.0467 '/' Outflow=0.26 cfs 0.021 af	Total I
Pond 61P: DMH-11	Peak Elev=232.21' Inflow=1.06 cfs 0.087 af 12.0" Round Culvert n=0.013 L=198.0' S=0.0677 '/ Outflow=1.06 cfs 0.087 af	
Pond 62P: CB-14	Peak Elev=219.33' Inflow=0.57 cfs 0.048 af 12.0" Round Culvert n=0.013 L=15.0' S=0.0467 '/ Outflow=0.57 cfs 0.048 af	
Pond 63P: DMH-4	Peak Elev=215.47' Inflow=5.66 cfs 0.468 af 24.0" Round Culvert n=0.013 L=35.0' S=0.0029 '/' Outflow=5.66 cfs 0.468 af	
Pond 66P: CB-6	Peak Elev=216.43' Inflow=0.57 cfs 0.047 af 12.0" Round Culvert n=0.013 L=24.0' S=0.0208 '/' Outflow=0.57 cfs 0.047 af	

6842-Post Prepared by {enter your comp	oany name her	2]	Type III 24-h	r 10-yr Rainfall=4.44"
HydroCAD® 10.10-3a s/n 03590			utions LLC	Page 46
Pond 67P: CB-7	12.0" Round Cul	vert n=0.013		Inflow=0.39 cfs 0.033 af Dutflow=0.39 cfs 0.033 af
Pond 68P: DMH-9	15.0" Round Cul	vert n=0.013		Inflow=3.48 cfs 0.267 af Dutflow=3.48 cfs 0.267 af
Pond 69P: CB-11	12.0" Round Cul	vert n=0.013		Inflow=0.45 cfs 0.037 af Dutflow=0.45 cfs 0.037 af
Pond 70P: CB-12	15.0" Round Cul	vert n=0.013		Inflow=3.03 cfs 0.230 af Dutflow=3.03 cfs 0.230 af
Pond 71P: CB-8	12.0" Round Cul	vert n=0.013		Inflow=0.74 cfs 0.061 af Dutflow=0.74 cfs 0.061 af
Pond 72P: CB-9	12.0" Round Cul	vert n=0.013		Inflow=0.70 cfs 0.058 af Dutflow=0.70 cfs 0.058 af
Pond 73P: DMH-6	12.0" Round Cul	vert n=0.013		Inflow=1.44 cfs 0.119 af Dutflow=1.44 cfs 0.119 af
Pond 78P: CB-19	12.0" Round Cul	vert n=0.013		Inflow=0.52 cfs 0.043 af Dutflow=0.52 cfs 0.043 af
Pond 79P: CB-10	12.0" Round Cul	vert n=0.013		Inflow=0.85 cfs 0.070 af Dutflow=0.85 cfs 0.070 af
Pond 80P: DMH-5	15.0" Round Cul	vert n=0.013		Inflow=2.81 cfs 0.232 af Dutflow=2.81 cfs 0.232 af
Pond 81P: CB-5	12.0" Round Cul	vert n=0.013		Inflow=1.17 cfs 0.092 af Dutflow=1.17 cfs 0.092 af
Pond 82P: DMH-3	12.0" Round Cul	vert n=0.013		Inflow=1.17 cfs 0.092 af Dutflow=1.17 cfs 0.092 af
-ink 20L: DP-A				Inflow=27.87 cfs 5.043 af rimary=27.87 cfs 5.043 af

Total Runoff Area = 30.660 acRunoff Volume = 5.457 afAverage Runoff Depth = 2.14"75.28% Pervious = 23.079 ac24.72% Impervious = 7.580 ac

repared by {enter your company name here}	6842-Post Type III 24-hr 10-yr Rainfall=4.44 Prepared by {enter your company name here}
ydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 47	HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 48
Summary for Subcatchment 9S: APT. BLDG. A	Summary for Subcatchment 21S: A.1
unoff = 1.73 cfs @ 12.09 hrs, Volume= 0.143 af, Depth= 4.20"	Runoff = 1.05 cfs @ 12.15 hrs, Volume= 0.087 af, Depth= 2.24"
unoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs ype III 24-hr 10-yr Rainfall=4.44"	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=4.44"
Area (sf) CN Description	Area (sf) CN Description
17,818 98 Roofs, HSG A	* 18,718 77 >75% Grass cover, Good, HSG A
17,818 100.00% Impervious Area	* 291 43 Woods, Good, HSG A
Tc Length Slope Velocity Capacity Description	95 98 Unconnected pavement, HSG A 1,091 98 Roofs, HSG A
(min) (feet) (ft/ft) (ft/sec) (cfs)	20,195 78 Weighted Average
6.0 Direct Entry,	19,009 94.13% Pervious Area 1,186 5.87% Impervious Area
	95 8.01% Unconnected
Summary for Subcatchment 16S: APT. BLDG. B	30 0.01% Onconnected
unoff = 1.73 cfs @ 12.09 hrs, Volume= 0.143 af, Depth= 4.20"	Tc Length Slope Velocity Capacity Description _(min) (feet) (ft/ft) (ft/sec) (cfs)
unoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs	10.0 Direct Entry,
yoe III 24-hr 10-yr Rainfall=4.44"	
	Summary for Subcatchment 22S: A.2
Area (sf) CN Description	
17,818 98 Roofs, HSG A	Runoff = 1.35 cfs @ 12.09 hrs, Volume= 0.111 af, Depth= 4.20"
17,818 100.00% Impervious Area	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Tc Length Slope Velocity Capacity Description	Type III 24-hr 10-yr Rainfall=4.44"
(min) (feet) (ft/ft) (ft/sec) (cfs)	
6.0 Direct Entry,	Area (sf) CN Description
	12,935 98 Paved parking, HSG A
Summary for Subcatchment 18S: APT. BLDG. C	915 98 Roofs, HSG A
	13,850 98 Weighted Average 13,850 100.00% Impervious Area
unoff = 1.73 cfs @ 12.09 hrs, Volume= 0.143 af, Depth= 4.20"	
	Tc Length Slope Velocity Capacity Description
unoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs ype III 24-hr 10-yr Rainfall=4.44"	(min) (feet) (ft/ft) (ft/sec) (cfs)
/pe iii 24-iii 10-yi Kaiilaii-4.44	6.0 Direct Entry,
Area (sf) CN Description	
17,818 98 Roofs, HSG A	Summary for Subcatchment 23S: A.3
17,818 100.00% Impervious Area	
	Runoff = 0.95 cfs @ 12.09 hrs, Volume= 0.079 af, Depth= 4.20"
Tc Length Slope Velocity Capacity Description	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
(min) (feet) (ft/ft) (ft/sec) (cfs)	Type III 24-hr 10-yr Rainfall=4.44"
6.0 Direct Entry,	
	Area (sf) CN Description
	9,767 98 Paved parking, HSG A

(min)	Length (feet)	Slope Velo (ft/ft) (ft/s		Description	
6.0	(leet)	(1011) (103	(013)	Direct Entry,	
		S	ummary for	Subcatchment 24S: A.4	
Runoff	=	0.52 cfs @	12.09 hrs, Volu	ume= 0.043 af, Depth= 4.20"	
		R-20 method, U yr Rainfall=4.4		nted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05	hrs
A	rea (sf)	CN Descrip			
	227 5,114		parking, HSG A HSG A	A	
	5,341 5,341		ed Average % Impervious A	Area	
(min)	Length (feet)	Slope Velo (ft/ft) (ft/s	city Capacity ec) (cfs)		
6.0				Direct Entry,	
		S	ummary for	Subcatchment 25S: A.5	
Runoff	=	2.18 cfs @	12.09 hrs, Volu	ume= 0.180 af, Depth= 4.20"	
		R-20 method, U yr Rainfall=4.4		nted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05	hrs
A	rea (sf)	CN Descrip			
	22,426 22,426		parking, HSG A % Impervious A		
	Length (feet)		city Capacity		
	(ieet)	(1011) (108		Direct Entry,	
Tc (min) 6.0		S	ummary for	Subcatchment 26S: B.6	
(min)				ume= 0.142 af, Depth= 1.85"	
(min)	=	1.93 cfs @	12.10 hrs, Volu	une– 0.142 al, Depui– 1.00	
(min) 6.0 Runoff		0	,	nted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05	hrs

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Area (sf) CN Adj Description * 31,146 68 >75% Grass cover, Good, HSG A 40,090 75 73 Weighted Average, UI Adjusted 31,146 77.69% Pervious Area 8,944 22.31% Impervious Area 8,944 22.31% Impervious Area 3,467 38.76% Unconnected Tc Length Slope Velocity Capacity (min) (ftet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 27S: A.6 Runoff = 1.16 cfs @ 12.09 hrs, Volume= 0.090 af, Depth= 3.76" Runoff sec Stranfall=4.44" Area (sf) CN Description 8.883 98 Paved parking, HSG A 1.619 68 * 1,619 68 >75% Grass cover, Good, HSG A 1.117 98 Roofs, HSG A * 1,619 12.86% Pervious Area 1.117 98 Roofs, HSG A 1.117 98 Roofs, HSG A </th <th></th>	
31,146 68 >75% Grass cover, Good, HSG A 3,467 98 Unconnected pavement, HSG A 40,090 75 73 Weighted Average, UI Adjusted 31,146 77.69% Pervious Area 3,467 3,467 38.76% Unconnected Te 8,944 22.31% Impervious Area 3,467 3,467 38.76% Unconnected Te Tc Length Slope Velocity Capacity 6.0 Direct Entry, Summary for Subcatchment 27S: A.6 Runoff 1.16 cfs @ 12.09 hrs, Volume= 0.090 af, Depth= 3.76" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hr Type III 24-hr 10-yr Rainfall=4.44" Area (sf) CN Description 8.883 98 Paved parking, HSG A 1,519 68 >75% Grass cover, Good, HSG A 1,117 98 Roofs, HSG A 12,567 94 Weighted Average 1,619 12.88% Pervious Area 10,948 87.12% Impervious Area 948	Page 50
3.467 98 Unconnected pavement, HSG A 40,090 75 73 Weighted Average, UI Adjusted 31,146 77.69% Pervious Area 8,944 22.31% Impervious Area 3,467 38.76% Unconnected 38.76% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 0.090 af, Depth= 3.76" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hr Ype III 24-hr 10-yr Rainfall=4.44" Area (sf) CN Description 8,883 98 Paved parking, HSG A 1,619 68 >75% Grass cover, Good, HSG A 1,619 68 >75% Grass cover, Good, HSG A 1,117 98 Roofs, HSG A 12,567 94 Weighted Average 1,28% Pervious Area 10,948 87.12% Impervious Area 10,948 87.12% Impervious Area 10,948 87.12% Impervious Area 10,948 87.12% Impervious Area 10,948 87.12% Impervious Area 10.94	
5,477 98 Roofs, HSG A 40,090 75 73 Weighted Average, UI Adjusted 31,146 77.69% Pervious Area 8,944 22.31% Impervious Area 3,467 38.76% Unconnected 5.00 0 Tc Length Slope Velocity Capacity Description (min) (fteet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 27S: A.6 Runoff = 1.16 cfs @ 12.09 hrs, Volume= 0.090 af, Depth= 3.76" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hr Ype III 24-hr 10-yr Rainfall=4.44" Area (sf) CN Description 8,883 98 Paved parking, HSG A 1,619 68 >75% Grass cover, Good, HSG A 948 98 Unconnected pavement, HSG A 1,117 98 Roofs, HSG A 1,2,567 94 Weighted Average 1,619 12.88% Pervious Area 948 8.66% Unconnected	
40,090 75 73 Weighted Average, UI Adjusted 31,146 77.69% Pervious Area 8,944 22.31% Impervious Area 3,467 38.76% Unconnected 1 Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 27S: A.6 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hr Ype III 24-hr 10-yr Rainfall=4.44" Area (sf) CN Description 8,883 98 Paved parking, HSG A 1,619 68 >75% Grass cover, Good, HSG A 1,619 68 >75% Grass cover, Good, HSG A 1,117 98 Roofs, HSG A 12,567 94 Weighted Average 1,619 12.88% Pervious Area 948 8.66% Unconnected 12,567 94 Weighted Average 1,619 12.88% Pervious Area 948 8.66% Unconnected 10,948 87.12% Impervious Area 948 8.66% Unconnected	
31,14677.69% Pervious Area8,94422.31% Impervious Area3,46738.76% UnconnectedTcLengthSlopeVelocity6.0Direct Entry,Summary for Subcatchment 27S: A.6Runoff = 1.16 cfs @ 12.09 hrs, Volume= 0.090 af, Depth= 3.76"Runoff = 1.16 cfs @ 12.09 hrs, Volume= 0.090 af, Depth= 3.76"Runoff = 1.16 cfs @ 12.09 hrs, Volume= 0.090 af, Depth= 3.76"Runoff = 1.16 cfs @ 12.09 hrs, Volume= 0.090 af, Depth= 3.76"Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrype III 24-hr10-yr Rainfall=4.44"Area (sf) CN Description8,88398Paved parking, HSG A1,61968>75% Grass cover, Good, HSG A94898Unconnected pavement, HSG A1,11798Roofs, HSG A12,56794Weighted Average1,61912.88% Pervious Area10,94887.12% Impervious Area9488.66% UnconnectedTcLengthSlopeVelocity6.0Direct Entry,Summary for Subcatchment 28S: B.1Runoff =1.75 cfs @ 12.09 hrs, Volume=0.128 af, Depth= 2.16"Runoff =1.75 cfs @ 12.09 hrs, Volume=0.128 af, Depth= 2.16"Runoff =1.75 cfs @ 12.09 hrs, Volume=0.128 af, Depth= 2.16"Runoff =1.75 cfs @ 12.09 hrs, Volume=0.128 af, Depth= 2.16"Runoff =1.75 cfs @ ass cove	
3,467 38.76% Unconnected Tc Length (feet) Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 27S: A.6 Runoff = 1.16 cfs @ 12.09 hrs, Volume= 0.090 af, Depth= 3.76" Runoff = 1.16 cfs @ 12.09 hrs, Volume= 0.090 af, Depth= 3.76" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hr Ype III 24-hr 10-yr Rainfall=4.44" Area (sf) CN Description 8,883 98 Paved parking, HSG A 1,619 68 >75% Grass cover, Good, HSG A 1,117 98 Roofs, HSG A 1,117 98 Roofs, HSG A 1,2567 94 Weighted Average 1,619 12.88% Pervious Area 948 8.66% Unconnected Tc Length Slope Velocity Capacity 0.0 Direct Entry, Summary for Subcatchment 28S: B.1 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hr intert Entry, Summary for Subcatchment 28S: B.1 <	
TcLengthSlopeVelocityCapacityDescription(min)(fet)(ft/ft)(ft/sec)(cfs)6.0Direct Entry,Summary for Subcatchment 27S: A.6Runoff=1.16 cfs @12.09 hrs, Volume=0.090 af, Depth= 3.76"Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hr5000 hrs, dt= 0.05 hrYou colspan="2">Area (sf)CNDescription8,88398Paved parking, HSG A1,61968>75% Grass cover, Good, HSG A94898Unconnected pavement, HSG A1,11798Roofs, HSG A12,56794Weighted Average1,61912.88% Pervious Area10,94887.12% Impervious Area9488.66% UnconnectedTcLengthSlopeVelocityCapacityDescription(min)(ft/ft)(ft/ft)(ft/sec)6.0Direct Entry,Summary for Subcatchment 28S: B.1Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrYpe III 24-hr10-yr Rainfail=4.44"Area (sf)CNDescription(min) (ft/ft) <td></td>	
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 27S: A.6 Runoff = 1.16 cfs @ 12.09 hrs, Volume= 0.090 af, Depth= 3.76" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hr Numoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hr You and the second of the second o	
$\begin{array}{rcl} 6.0 & & & & & & \\ \hline & & & & & & \\ \hline & & & &$	
Summary for Subcatchment 27S: A.6 Runoff = 1.16 cfs @ 12.09 hrs, Volume= 0.090 af, Depth= 3.76" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hr Ype III 24-hr 10-yr Rainfall=4.44" Area (sf) CN Description 8,883 98 Paved parking, HSG A 1,619 68 >75% Grass cover, Good, HSG A 948 98 Unconnected pavement, HSG A 1,117 98 Roofs, HSG A 12,567 94 Weighted Average 1,619 12.88% Pervious Area 948 8.66% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) 6.0 Direct Entry, 0.128 af, Depth= 2.16" Summary for Subcatchment 28S: B.1 1.75 cfs @ 12.09 hrs, Volume= 0.128 af, Depth= 2.16" 20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hr 2.70 p8	-
Runoff = $1.16 \text{ cfs} @ 12.09 \text{ hrs}, \text{Volume} = 0.090 \text{ af}, \text{Depth} = 3.76"$ Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hr Type III 24-hr 10-yr Rainfall=4.44" Area (sf) CN Description 8,883 98 Paved parking, HSG A 1,619 68 >75% Grass cover, Good, HSG A 948 98 Unconnected pavement, HSG A 1,117 98 Roofs, HSG A 12,567 94 Weighted Average 1,619 12.88% Pervious Area 948 8.66% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 28S: B.1 Runoff = 1.75 cfs @ 12.09 hrs, Volume= 0.128 af, Depth= 2.16" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hr Type III 24-hr 10-yr Rainfall=4.44" Area (sf) CN Description 30,559 77 >75% Grass cover, Good, HSG A 270 98 Unconnected pavement, HSG A 270 98 Unconnected pavement, HSG A 270 0.88% Impervious Area 270 0.88% Impervious Area	
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hr Ype III 24-hr 10-yr Rainfall=4.44" Area (sf) CN Description 8,883 98 Paved parking, HSG A 1,619 68 >75% Grass cover, Good, HSG A 948 98 Unconnected pavement, HSG A 1,117 98 Roofs, HSG A 12,567 94 Weighted Average 1,619 12.88% Pervious Area 948 87.12% Impervious Area 948 866% Unconnected Tc Length Slope Velocity Capacity 0.948 87.12% Impervious Area 948 866% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) 6.0 Direct Entry, Summary for Subcatchment 28S: B.1 Runoff 1.75 cfs @ 12.09 hrs, Volume= 0.128 af, Depth= 2.16" Runoff 1.75 cfs @ 12.09 hrs, Volume= 0.128 af, Depth= 4.44" Area (sf) CN Description	
Type III 24-hr 10-yr Rainfall=4.44" Area (sf) CN Description 8,883 98 Paved parking, HSG A 1,619 68 >75% Grass cover, Good, HSG A 948 98 Unconnected pavement, HSG A 1,117 98 Roofs, HSG A 12,567 94 Weighted Average 1,619 12.88% Pervious Area 10,948 87.12% Impervious Area 948 8.66% Unconnected Tc Length Slope (feet) (ft/ft) (ft/sec) 6.0 Direct Entry, Summary for Subcatchment 28S: B.1 Runoff 8.059 12.09 hrs, Volume 0.128 af, Depth= 2.16" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hr Yope III 24-hr 10-yr Rainfall=4.44" Area (sf) CN Description 30,559 77 30,559 77 98 Unconnected pavement, HSG A 270	
8,883 98 Paved parking, HSG A 1,619 68 >75% Grass cover, Good, HSG A 948 98 Unconnected pavement, HSG A 117 98 Roofs, HSG A 12,567 94 Weighted Average 1,619 12.88% Pervious Area 10,948 87.12% Impervious Area 948 8.66% Unconnected Tc Length Slope Velocity 6.0 Direct Entry, Summary for Subcatchment 28S: B.1 Runoff a 1.75 cfs @ 12.09 hrs, Volume 0.128 af, Depth= 2.16" Runoff a 1.75 cfs @ 12.09 hrs, Volume 0.128 af, Depth= 2.16" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hr Type III 24-hr 10-yr Rainfall=4.44" Area (sf) CN Description 30,559 77 30,629 77 Weighted Average 30,629 77 <tr< td=""><td>S</td></tr<>	S
8,883 98 Paved parking, HSG A 1,619 68 >75% Grass cover, Good, HSG A 948 98 Unconnected pavement, HSG A 117 98 Roofs, HSG A 12,567 94 Weighted Average 1,619 12.88% Pervious Area 10,948 87.12% Impervious Area 948 8.66% Unconnected Tc Length Slope Velocity 6.0 Direct Entry, Summary for Subcatchment 28S: B.1 Runoff a 1.75 cfs @ 12.09 hrs, Volume 0.128 af, Depth= 2.16" Runoff a 1.75 cfs @ 12.09 hrs, Volume 0.128 af, Depth= 2.16" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hr Type III 24-hr 10-yr Rainfall=4.44" Area (sf) CN Description 30,559 77 30,629 77 Weighted Average 30,629 77 <tr< td=""><td></td></tr<>	
948 98 Unconnected pavement, HSG A 1,117 98 Roofs, HSG A 12,567 94 Weighted Average 1,619 12.88% Pervious Area 10,948 87.12% Impervious Area 948 8.66% Unconnected Tc Length (feet) (ft/ft) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 28S: B.1 Runoff a 1.75 cfs @ 12.09 hrs, Volume= 0.128 af, Depth= 2.16" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hr Yope III 24-hr 10-yr Rainfall=4.44" Area (sf) CN Description 30,559 77 >75% Grass cover, Good, HSG A 270 98 Unconnected pavement, HSG A 30,829 77 Weighted Average 30,859 99.12% Pervious Area 270 270 0.88% Impervious Area 270	
1,117 98 Roofs, HSG A 12,567 94 Weighted Average 1,619 12.88% Pervious Area 10,948 87.12% Impervious Area 948 8.66% Unconnected Tc Length Slope (min) (feet) (ft/ft) 6.0 Direct Entry, Summary for Subcatchment 28S: B.1 Runoff = 1.75 cfs @ 12.09 hrs, Volume= 0.128 af, Depth= 2.16" Runoff = 1.75 cfs @ 12.09 hrs, Volume= 0.128 af, Depth= 2.16" Runoff Subcatchment 28S: B.1 Runoff = 1.75 cfs @ 12.09 hrs, Volume= 0.128 af, Depth= 2.16" Runoff = 1.75 cfs @ 12.09 hrs, Volume= 0.128 af, Depth= 2.16" Runoff Subcatchment 28S: B.1 Subcatchment 28S: B.1 Subcatchment 28S: B.1 Runoff Subcatchment 28S: B.1	
12,567 94 Weighted Average 1,619 12.88% Pervious Area 10,948 87.12% Impervious Area 948 8.66% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 28S: B.1 Runoff = 1.75 cfs @ 12.09 hrs, Volume= 0.128 af, Depth= 2.16" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hr ype III 24-hr 10-yr Rainfall=4.44" Area (sf) CN Description 30,559 77 >75% Grass cover, Good, HSG A 270 98 Unconnected pavement, HSG A 30,829 77 Weighted Average 30,559 99.12% Pervious Area 270 270 0.88% Impervious Area 270	
1,619 12.85% Pervious Area 10,948 87.12% Impervious Area 948 8.66% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/scc) (cfs) 6.0 Direct Entry, Summary for Subcatchment 28S: B.1 Runoff = 1.75 cfs @ 12.09 hrs, Volume= 0.128 af, Depth= 2.16" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hr Ype III 24-hr 10-yr Rainfall=4.44" Area (sf) QN Description 30,559 77 >75% Grass cover, Good, HSG A 270 98 Unconnected pavement, HSG A 30,829 77 Weighted Average 30,559 99.12% Pervious Area 270 270 0.88% Impervious Area	
948 8.66% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 28S: B.1 Runoff = 1.75 cfs @ 12.09 hrs, Volume= 0.128 af, Depth= 2.16" Runoff = 1.75 cfs @ 12.09 hrs, Volume= 0.128 af, Depth= 2.16" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hr ype III 24-hr 10-yr Rainfall=4.44" Area (sf) CN Description 30,559 77 >75% Grass cover, Good, HSG A 270 98 Unconnected pavement, HSG A 30,829 77 Weighted Average 30,559 99.12% Pervious Area 270 0.88% Impervious Area 270 0.88% Impervious Area	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 28S: B.1 Runoff = 1.75 cfs @ 12.09 hrs, Volume= 0.128 af, Depth= 2.16" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hr Ype III 24-hr 10-yr Rainfall=4.44" Area (sf) CN Description 30,559 77 >75% Grass cover, Good, HSG A 270 98 Unconnected pavement, HSG A 30,829 77 Weighted Average 30,829 99.12% Pervious Area 270 0.88% Impervious Area	
(min) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 28S: B.1 Runoff = 1.75 cfs @ 12.09 hrs, Volume= 0.128 af, Depth= 2.16" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hr Area (sf) CN Description 30,559 77 >75% Grass cover, Good, HSG A 270 98 Unconnected pavement, HSG A 30,829 77 Weighted Average 30,555 99.12% Pervious Area 270 0.88% Impervious Area 2.00	
Direct Entry, Direct Entry, Summary for Subcatchment 28S: B.1 Runoff = 1.75 cfs @ 12.09 hrs, Volume= 0.128 af, Depth= 2.16" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hr Ype III 24-hr 10-yr Rainfall=4.44" Area (sf) CN Description 30,559 77 >75% Grass cover, Good, HSG A 270 98 Unconnected pavement, HSG A 30,829 77 Weighted Average 30,859 99.12% Pervious Area 270 0.88% Impervious Area	
Runoff = 1.75 cfs @ 12.09 hrs, Volume= 0.128 af, Depth= 2.16" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hr Type III 24-hr 10-yr Rainfall=4.44" Area (sf) CN Description 30,559 77 >75% Grass cover, Good, HSG A 270 98 Unconnected pavement, HSG A 30,829 77 Weighted Average 30,559 99.12% Pervious Area 270 0.88% Impervious Area	
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hr Type III 24-hr 10-yr Rainfall=4.44" Area (sf) CN Description 30,559 77 >75% Grass cover, Good, HSG A 270 98 Unconnected pavement, HSG A 30,829 77 Weighted Average 30,559 99.12% Pervious Area 270 0.88% Impervious Area	
Area (sf) CN Description 30,559 77 >75% Grass cover, Good, HSG A 270 98 Unconnected pavement, HSG A 30,829 77 Weighted Average 30,559 99.12% Pervious Area 270 0.88% Impervious Area	
Area (sf) CN Description 30,559 77 >75% Grass cover, Good, HSG A 270 98 Unconnected pavement, HSG A 30,829 77 Weighted Average 30,559 99.12% Pervious Area 270 0.88% Impervious Area	s
30,559 77 >75% Grass cover, Good, HSG A 270 98 Unconnected pavement, HSG A 30,829 77 Weighted Average 30,559 99.12% Pervious Area 270 0.88% Impervious Area	
27098Unconnected pavement, HSG A30,82977Weighted Average30,55999.12% Pervious Area2700.88% Impervious Area	
30,829 77 Weighted Average 30,559 99.12% Pervious Area 270 0.88% Impervious Area	
30,559 99.12% Pervious Area 270 0.88% Impervious Area	
270 0.88% Impervious Area	
270 100.00% Unconnected	

HydroCA	d by {en D® 10.10-					D Software	Solutio	ns LLC		Page
Tc (min)	Length (feet)	Slop (ft/fl		ocity 'sec)	Capacity (cfs		ion			
6.0	(1001)	(.) (10)	000)	(0.0	Direct E	ntry,			
			s	Summ	ary for	Subcatc	hmen	nt 29S: B.	2	
Runoff	=	1.22	cfs @	12.09	hrs, Vo	lume=	0.0	093 af, Dep	oth= 3.65"	
	y SCS TF 24-hr 10-				CS, Weig	hted-CN, Ti	ime Sp	oan= 0.00-7	72.00 hrs, d	lt= 0.05 hrs
A	rea (sf)		Descri							
ŧ	2,173 1.997	68 98				ood, HSG / ent, HSG A				
	9,211				ig, HSG					
	13,381	93	Weigh							
	2,173 11.208				ious Are rvious A					
	1,997				onnected					
Tc (min)	Length				Capacity		ion			
(111111)		(ft/fi	H) (ft/s)	(apr)	(cfc)	`				
6.0	(feet)	(ft/fl	t) (ft/:	sec)	(cfs) Direct E				
6.0	(ieet)	(ft/fl			•	Direct E	ntry,			
6.0	(leet)	(ft/f1			•	/	ntry,	nt 30S: B.	3	
6.0 Runoff	=		S	Summ	•	Direct E Subcatcl	intry, hmen	nt 30S: B. 133 af, Dep		
Runoff Runoff b	=	1.64 R-20 me	Scfs @ ethod, L	Summ 12.09 JH=SC	ary for	Direct E Subcatcl	i ntry , hmen 0.1	133 af, Dep	oth= 4.09"	lt= 0.05 hrs
Runoff Runoff b Type III 2	= y SCS TF 24-hr 10-	1.64 R-20 me yr Rain	S cfs @ ethod, U fall=4.4	5umm 12.09 JH=SC 14"	ary for	Direct E Subcatcl	i ntry , hmen 0.1	133 af, Dep	oth= 4.09"	lt= 0.05 hrs
Runoff Runoff b Type III 2	= y SCS TF 24-hr 10- <u>rea (sf)</u> 731	1.64 R-20 me yr Rain <u>CN</u> 68	S cfs @ ethod, L fall=4.4 <u>Descri</u> >75%	Summ 12.09 JH=SC 14" Grass	hrs, Vo S, Weig	Direct E Subcatcl lume= hted-CN, Ti	intry, hmen 0.1 ime Sp	133 af, Dep	oth= 4.09"	it= 0.05 hrs
Runoff Runoff b Type III 2 A	= 24-hr 10- rea (sf) 731 2,575	1.64 R-20 me yr Rain <u>CN</u> 68 98	S cfs @ ethod, U ifall=4.4 <u>Descri</u> >75% Uncon	Summ 12.09 JH=SC 14" Grass inected	ary for hrs, Vo CS, Weig cover, G	Direct E Subcatcl lume= hted-CN, Ti Good, HSG A	intry, hmen 0.1 ime Sp	133 af, Dep	oth= 4.09"	it= 0.05 hrs
Runoff Runoff b Type III 2 A	= 24-hr 10- <u>rea (sf)</u> 731 2,575 13,754	1.64 R-20 me yr Rain <u>CN</u> 68 98	S cfs @ ethod, l fall=4.4 <u>Descri</u> >75% Uncon <u>Paved</u>	Summ 12.09 JH=SC 14" Grass inected parkir	ary for hrs, Vo CS, Weig cover, G I paveme	Direct E Subcatcl lume= hted-CN, Ti Good, HSG A	intry, hmen 0.1 ime Sp	133 af, Dep	oth= 4.09"	it= 0.05 hrs
Runoff Runoff b Type III 2 A	= y SCS TF 24-hr 10- 731 2,575 13,754 17,060 731	1.64 R-20 me yr Rain <u>CN</u> 68 98 98	S cfs @ ethod, U fall=4.4 <u>Descri</u> >75% Uncon <u>Paved</u> Weigh 4.28%	JH=SC JH=SC 44" Grass nected parkin ted Av Pervice	ary for hrs, Vo CS, Weig cover, C l pavem ig, HSG erage bus Area	Direct E Subcatcl lume= hted-CN, Ti bood, HSG A ent, HSG A A	intry, hmen 0.1 ime Sp	133 af, Dep	oth= 4.09"	It= 0.05 hrs
Runoff Runoff b Type III 2 A	= y SCS TF 24-hr 10- 731 2,575 13,754 17,060 731 16,329	1.64 R-20 me yr Rain <u>CN</u> 68 98 98	S ethod, L fall=4.4 <u>Descrii</u> >75% Uncon Paved Weigh 4.28% 95.72%	Summ 12.09 JH=SC 44" Grass Inected Grass Inected I parkin ted Av Pervic % Impe	ary for hrs, Vo CS, Weig cover, C d paveme ig, HSG erage ous Area ervious A	Direct E Subcatcl lume= hted-CN, Ti bood, HSG A ent, HSG A A	intry, hmen 0.1 ime Sp	133 af, Dep	oth= 4.09"	It= 0.05 hrs
Runoff Runoff b Type III 2 A	= y SCS TF 24-hr 10- 731 2,575 13,754 17,060 731 16,329 2,575	1.64 R-20 me yr Rain <u>CN</u> 68 98 98 98 97	S cfs @ ethod, L fall=4.4 <u>Descrii</u> >75% Uncon <u>Paved</u> Weigh 4.28% 95.729 15.779	JH=SC JH=SC 44" Grass inected parkin ted Av 9 Pervic % Impe % Unco	ary for hrs, Vo CS, Weig cover, C d pavem ig, HSG erage bus Area ervious A ponnected	Direct E Subcatcl lume= hted-CN, Ti sood, HSG / ent, HSG A A	intry, hmen 0.1 ime Sp	133 af, Dep	oth= 4.09"	lt= 0.05 hrs
Runoff Runoff b Type III 2 A Tc	= y SCS TF 24-hr 10- 731 2,575 13,754 17,060 731 16,329 2,575 Length	1.64 2-20 me yr Rain 98 98 98 97 Slop	S cfs @ ethod, U fall=4.4 <u>Descri</u> >75% Uncon Paved Weigh 4.28% 95.72% 15.77% e Velo	Summ 12.09 JH=SC 44" Grass nected Cass nected parkin ted Av Pervic % Unco ocity	ary for hrs, Vo CS, Weig cover, C b pavement of, HSG erage bus Area privious A onnected Capacity	Direct E Subcatcl lume= hted-CN, Ti Good, HSG / ent, HSG A A vrea	intry, hmen 0.1 ime Sp	133 af, Dep	oth= 4.09"	It= 0.05 hrs
Runoff Runoff b Type III 2 A	= y SCS TF 24-hr 10- 731 2,575 13,754 17,060 731 16,329 2,575	1.64 R-20 me yr Rain <u>CN</u> 68 98 98 98 97	S cfs @ ethod, U fall=4.4 <u>Descri</u> >75% Uncon Paved Weigh 4.28% 95.72% 15.77% e Velo	JH=SC JH=SC 44" Grass inected parkin ted Av 9 Pervic % Impe % Unco	ary for hrs, Vo CS, Weig cover, C d pavem ig, HSG erage bus Area ervious A ponnected	Direct E Subcatcl lume= hted-CN, Ti Good, HSG / ent, HSG A A vrea	intry, hmen 0.1 ïme Sp A	133 af, Dep	oth= 4.09"	lt= 0.05 hrs
Runoff Runoff b Type III 2 A * Tc (min)	= y SCS TF 24-hr 10- 731 2,575 13,754 17,060 731 16,329 2,575 Length	1.64 2-20 me yr Rain 98 98 98 97 Slop	S cfs @ ethod, L fall=4.4 >75% Uncon Paved Weigh 4.28% 95.729 15.779 e Velc b) (ft/s	JH=SC JH=SC 44" Grass necteo parkir ted Av bervic % Impe % Unco ocity sec)	ary for hrs, Vo CS, Weig cover, C d paveme gg, HSG erage ous Area ervious A onnecteo Capacity (cfs	Direct E Subcatcl lume= hted-CN, Ti bood, HSG / ent, HSG A A rea l Descripti	intry, hmen 0.1 ime Sp A	133 af, Dep ban= 0.00-7	oth= 4.09" 72.00 hrs, d	lt= 0.05 hrs
Runoff Runoff b Type III 2 A * Tc (min)	= y SCS TF 24-hr 10- 731 2,575 13,754 17,060 731 16,329 2,575 Length	1.64 R-20 me yr Rain 68 98 98 98 97 Slop (ft/ft	S cfs @ ethod, L ifall=4.4 <u>Descrii</u> >75% Uncon <u>Paved</u> Weigh 4.28% 95.729 15.779 e Vela t) (ft/)	J2.09 JH=SC JH=SC I4" Grass Inectec J parkiri ted Av Pervic % Impe % Unco ocity sec)	ary for hrs, Vo CS, Weig cover, C d paveme gg, HSG erage ous Area ervious A onnecteo Capacity (cfs	Direct E Subcatcl lume= hted-CN, Tri Bood, HSG / ent, HSG A A vrea ' Descripti Direct E Subcatcl	intry, hmen 0.2 iime Sp A	133 af, Dep ban= 0.00-7	oth= 4.09" 72.00 hrs, d	It= 0.05 hrs
Runoff Runoff b Type III 2 A * Tc (min) 6.0 Runoff	= y SCS TF 24-hr 10- 731 2,575 13,754 17,060 731 16,329 2,575 Length (feet)	1.64 x-20 me yr Rain <u>CN</u> 68 98 98 97 Slopp (ft/ft	S cfs @ ethod, L fall=4.4 <u>Descri</u> >75% Uncon <u>Paved</u> Weigh 4.28% 95.72% 15.77% e Veld t) (ft/: S S cfs @	Summ 12.09 JH=SC 44" pition Grass nnectecc parkir ted Av Pervic % Impe % Uncc ocity ocity Summ 12.09	ary for hrs, Vo CS, Weig cover, Cd d paveme ig, HSG erage ous Area ervious A onnectec Capacity (cfs ary for hrs, Vo	Direct E Subcatcl lume= hted-CN, Tri Good, HSG / ent, HSG A A rrea i Direct E Subcatcl lume=	intry, hmen 0.1 ime Sp A A ion intry, hmen 0.1	133 af, Dep Dan= 0.00-7	oth= 4.09" 2.00 hrs, d 4 oth= 4.09"	It= 0.05 hrs

Area (sf) CN Description * 71 68 >75% Grass cover, Good, HSG A 13,754 98 Paved parking, HSG A 14,28% Pervious Area 2,575 15.77% Unconnected Tc Length Slope 16,329 95.72% Impervious Area 2,575 15.77% Unconnected Tc Length Slope 0.0 Direct Entry, Summary for Subcatchment 32S: B.5 Runoff = 2.00 cfs @ 12.09 hrs, Volume= 0.148 af, Depth= 3.14" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Trype III 24-hr 10-yr Rainfall=4.44" Area (sf) CN Description 6.653 98 Paved parking, HSG A 8,034 82.62% Pervious Area 1.324 98 Unconnected pavement, HSG A 6.653 98 Rods, HSG A 8,034				ur company 03590 © 202		e}) Software So	utions LLC	Page 52
731 68 >75% Grass cover, Good, HSG A 2,575 98 Unconnected pavement, HSG A 13,754 98 Paved parking, HSG A 17,060 97 Weighted Average 731 4.28% Pervious Area 16,329 95.72% Impervious Area 2,575 15.77% Unconnected Tc Length Slope Velocity Capacity Description (min) (fet) (ft/ft) (ft/sec) (cfs) 0 Burnery for Subcatchment 32S: B.5 Runoff = 2.00 cfs 12.09 hrs, Volume= 0.148 af, Depth= 3.14" Runoff = 2.00 cfs 12.09 hrs, Volume= Area (sf) CN Description 8,616 98 Paved parking, HSG A 8,034 68 575% Grass cover, Good, HSG A 1,324 98 Unconnected pavement, HSG A 6,633 98 Roofs, HSG A 24,627 88 Weighted Average 8,034 32.62% Pervious Area 1,324 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
2,575 98 Unconnected pavement, HSG A 13,754 98 Paved parking, HSG A 17,060 97 Weighted Average 731 4.28% Pervious Area 16,329 95.72% Impervious Area 2,575 15.77% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 32S: B.5 Runoff = 2.00 cfs @ 12.09 hrs, Volume= 0.148 af, Depth= 3.14" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs ype III 24-hr 10-yr Rainfall=4.44" Area (sf) CN Description 8,616 98 Paved parking, HSG A 8,034 68 >75% Grass cover, Good, HSG A 1,324 98 Unconnected pavement, HSG A 8,034 68 >75% Grass cover, Good, HSG A 1,324 98 Weighted Average 8,034 32.62% Pervious Area 1,324 7.38% Impervious Area 1,324 7.38% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 33S: B.7 Runoff = 7.30 cfs @ 12.44 hrs, Volume= 0.947 af, Depth= 1.70" Runoff = 7.30 cfs @ 12.44 hrs, Volume= 0.947 af, Depth= 1.70"	A							
13,754 98 Paved parking, HSG A 17,060 97 Weighted Average 731 4.28% Pervious Area 16,329 95.72% Impervious Area 2,575 15.77% Unconnected Tc Length Slope (min) (feet) (ft/ft) (feet) (ft/ft) (ft/sec) 6.0 Direct Entry, Summary for Subcatchment 32S: B.5 tunoff = 2.00 cfs @ 12.09 hrs, Volume= 0.148 af, Depth= 3.14" tunoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs ype III 24-hr 10-yr Rainfall=4.44" Area (sf) CN Description 8,616 98 Paved parking, HSG A 8,034 68 >75% Grass cover, Good, HSG A 1,324 98 Unconnected pavement, HSG A 6,653 98 Roofs, HSG A 24,627 88 Weighted Average 8,034 32.62% Pervious Area 1,324 7.98% Unconnected Tc Length Slope Velocity Capacity<								
731 4.28% Pervious Årea 16,329 95.72% Impervious Area 2,575 15.77% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 32S: B.5 unoff 2.00 cfs @ 12.09 hrs, Volume= 0.148 af, Depth= 3.14" unoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs ype III 24-hr 10-yr Rainfall=4.44" Area (sf) CN 0 Description 8,616 98 Paved parking, HSG A 8,034 68 >75% Grass cover, Good, HSG A 1,324 98 Unconnected pavement, HSG A 24,627 88 Weighted Average 8,034 32.62% Pervious Area 16,593 67.38% Impervious Area 16,593 67.38% Impervious Area 16,593 67.38% Impervious Area 1,324 7.98% Unconnected Direct Entry, Summary for Subcatchment 33S: B.7 </td <td></td> <td>13,754</td> <td>98</td> <td>Paved park</td> <td>ing, HSG A</td> <td></td> <td></td> <td></td>		13,754	98	Paved park	ing, HSG A			
16,329 95.72% Impervious Area 2,575 15.77% Unconnected Tc Length Slope Velocity Capacity Description (min) (fet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 32S: B.5 unoff = 2.00 cfs @ 12.09 hrs, Volume= 0.148 af, Depth= 3.14" unoff second for the s			97					
Tc Length Slope Velocity Capacity (cfs) Description 6.0 Direct Entry, Summary for Subcatchment 32S: B.5 unoff = 2.00 cfs @ 12.09 hrs, Volume= 0.148 af, Depth= 3.14" unoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs ype III 24-hr 10-yr Rainfall=4.44" Area (sf) CN Description 8,616 98 Paved parking, HSG A 8,034 68 >75% Grass cover, Good, HSG A 1,324 98 Unconnected pavement, HSG A 6,653 98 Roofs, HSG A 24,627 88 Weighted Average 8,034 32.62% Pervious Area 16,593 67.38% Impervious Area 1,324 7.98% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 33S: B.7 unoff = 7.30 cfs @ 12.44 hrs, Volume=		16,329		95.72% Im	pervious Ar	ea		
(min) (fet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 32S: B.5 unoff = 2.00 cfs @ 12.09 hrs, Volume= 0.148 af, Depth= 3.14" unoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs ype III 24-hr 10-yr Rainfall=4.44" Area (sf) CN Description 8,616 98 Paved parking, HSG A 8,034 68 >75% Grass cover, Good, HSG A 1,324 98 Unconnected pavement, HSG A 6,653 98 Roofs, HSG A 24,627 88 Weighted Average 8,034 32.62% Pervious Area 1,324 7.98% Unconnected Tc Length Slope Velocity Capacity Description (min) (fet) (ft/ft) (ft/sec) 6.0 Direct Entry, Summary for Subcatchment 33S: B.7 unoff = 7.30 cfs @ 12.44 hrs, Volume= 0.947 af, Depth= 1.70" unoff		2,575		15.77% UN	connected			
6.0 Direct Entry, Summary for Subcatchment 32S: B.5 unoff = 2.00 cfs @ 12.09 hrs, Volume= 0.148 af, Depth= 3.14" unoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs ype III 24-hr 10-yr Rainfall=4.44" Area (sf) CN Description 8,616 98 Paved parking, HSG A 8,034 68 >75% Grass cover, Good, HSG A 1,324 98 Unconnected pavement, HSG A 8,034 32.62% Pervious Area 16,593 67.38% Impervious Area 1,324 7.98% Unconnected Tc Length Slope Velocity Capacity Description (min) (fet) (ft/ft) (ft/sc) 6.0 Direct Entry, Summary for Subcatchment 33S: B.7 unoff = 7.30 cfs @ 12.44 hrs, Volume= 0.947 af, Depth= 1.70" unoff = 7.30 cfs @ 12.44 hrs, Volume= 0.947 af, Depth= 1.70"						Description		
unoff = $2.00 \text{ cfs} @ 12.09 \text{ hrs}$, Volume= 0.148 af , Depth= 3.14 " unoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-72.00 \text{ hrs}$, dt= 0.05 hrs type III 24-hr 10-yr Rainfall= 4.44 " Area (sf) CN Description 8,616 98 Paved parking, HSG A 8,034 68 >75% Grass cover, Good, HSG A 1,324 98 Unconnected pavement, HSG A 6,653 98 Roofs, HSG A 24,627 88 Weighted Average 8,034 32.62% Pervious Area 1,324 7.98% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 33S: B.7 unoff = 7.30 cfs @ 12.44 hrs, Volume= 0.947 af, Depth= 1.70" unoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs	· · ·	(leet)	(101	it) (103eC)	(015)	Direct Ent	у,	
unoff = $2.00 \text{ cfs} @ 12.09 \text{ hrs}$, Volume= 0.148 af , Depth= 3.14 " unoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-72.00 \text{ hrs}$, dt= 0.05 hrs pe III 24-hr 10-yr Rainfall= 4.44 " Area (sf) CN Description 8,616 98 Paved parking, HSG A 8,034 68 >75% Grass cover, Good, HSG A 1,324 98 Unconnected pavement, HSG A 6,653 98 Roofs, HSG A 24,627 88 Weighted Average 8,034 32.62% Pervious Area 1,324 7.98% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 33S: B.7 unoff = 7.30 cfs @ 12.44 hrs, Volume= 0.947 af, Depth= 1.70" unoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs				Sum	marv for s	Subcatchn	nent 32S: B.5	
unoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs pe III 24-hr 10-yr Rainfall=4.44" Area (sf) CN Description 8,616 98 Paved parking, HSG A 8,034 68 >75% Grass cover, Good, HSG A 1,324 98 Unconnected pavement, HSG A 6,653 98 Roofs, HSG A 24,627 88 Weighted Average 8,034 32.62% Pervious Area 16,593 67.38% Impervious Area 1,324 7.98% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 33S: B.7 unoff = 7.30 cfs @ 12.44 hrs, Volume= 0.947 af, Depth= 1.70" unoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs	Inoff	=	2 00		•			
Image III 24-hr 10-yr Rainfall=4.44" Area (sf) CN Description 8,616 98 Paved parking, HSG A 8,034 68 >75% Grass cover, Good, HSG A 1,324 98 Unconnected pavement, HSG A 6,653 98 Roofs, HSG A 24,627 88 Weighted Average 8,034 32.62% Pervious Area 16,593 67.38% Impervious Area 1,324 7.98% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) 6.0 Direct Entry, Summary for Subcatchment 33S: B.7 unoff = 7.30 cfs @ 12.44 hrs, Volume= 0.947 af, Depth= 1.70" unoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs				0	,		,	0.05 has
8,616 98 Paved parking, HSG A 8,034 68 >75% Grass cover, Good, HSG A 1,324 98 Unconnected pavement, HSG A 6,653 98 Roofs, HSG A 24,627 88 Weighted Average 8,034 32.62% Pervious Area 16,593 67.38% Impervious Area 1,324 7.98% Unconnected Tc Length Slope Velocity Capacity 0 (fuft) (ft/sec) 6.0 Direct Entry, Summary for Subcatchment 33S: B.7 unoff = 7.30 cfs @ 12.44 hrs, Volume= 0.947 af, Depth= 1.70" unoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs					SCS, Weigh	ted-CN, Time	e Span= 0.00-72.00 hrs, dt=	= 0.05 hrs
8,034 68 >75% Grass cover, Good, HSG A 1,324 98 Unconnected pavement, HSG A 6,653 98 Roofs, HSG A 24,627 88 Weighted Average 8,034 32.62% Pervious Area 16,593 67.38% Impervious Area 1,324 7.98% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) 6.0 Direct Entry, Summary for Subcatchment 33S: B.7 unoff = 7.30 cfs @ 12.44 hrs, Volume= 0.947 af, Depth= 1.70" unoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs	A							
1,324 98 Unconnected pavement, HSG A 6,653 98 Roofs, HSG A 24,627 88 Weighted Average 8,034 32,62% Pervious Area 16,593 67.38% Impervious Area 1,324 7.98% Unconnected Tc Length Slope Velocity Capacity Description (min) (fet) (ft/ft) (ft/sec) 6.0 Direct Entry, Summary for Subcatchment 33S: B.7 anoff anoff 7.30 cfs @ 12.44 hrs, Volume= 0.947 af, Depth= unoff Summary for Subcatchment 33S: B.7								
24,627 88 Weighted Average 8,034 32.62% Pervious Area 16,593 67.38% Impervious Area 1,324 7.98% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) 6.0 Direct Entry, Summary for Subcatchment 33S: B.7 unoff = 7.30 cfs @ 12.44 hrs, Volume= 0.947 af, Depth= 1.70" unoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs		1,324	98	Unconnect	ed pavemei			
8,034 32.62% Pervious Area 16,593 67.38% Impervious Area 1,324 7.98% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 33S: B.7 unoff = 7.30 cfs @ 12.44 hrs, Volume= 0.947 af, Depth= 1.70" unoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs								
1,324 7.98% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 33S: B.7 unoff = 7.30 cfs @ 12.44 hrs, Volume= 0.947 af, Depth= 1.70" unoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs		8,034		32.62% Pe	rvious Area			
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 33S: B.7 unoff = 7.30 cfs @ 12.44 hrs, Volume= 0.947 af, Depth= 1.70" unoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs						ea		
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 33S: B.7 unoff = 7.30 cfs @ 12.44 hrs, Volume= 0.947 af, Depth= 1.70" unoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs	То	Longth	Slor	vo Volocity	Capacity	Description		
Summary for Subcatchment 33S: B.7 unoff = 7.30 cfs @ 12.44 hrs, Volume= 0.947 af, Depth= 1.70" unoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs						Description		
unoff = 7.30 cfs @ 12.44 hrs, Volume= 0.947 af, Depth= 1.70" unoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs	6.0					Direct Entr	у,	
unoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs				Sum	mary for	Subcatchn	nent 33S: B.7	
	unoff	=	7.30	cfs @ 12.4	4 hrs, Volu	ime=	0.947 af, Depth= 1.70"	
/pe III 24-hr 10-yr Rainfall=4.44"					SCS, Weigh	ted-CN, Time	e Span= 0.00-72.00 hrs, dt=	= 0.05 hrs
	pe III	24-hr 10-	yr Rair	nfall=4.44"				

<u>lydroC</u> A			ur company 03590 © 2020		≠}) Software Solu	tions LLC	Page 53
	rea (sf)	CN	Description	-			
	29,407	68	>75% Grass		NOT HSC A		
	97,286	79	>75% Grass				
	9,046	89	>75% Grass				
	27,194	43	Woods, Goo		, -		
	15,779	76	Woods, Goo				
	4,399	82	Woods, Goo				
	1,606 319	98	Unconnecte Unconnecte				
	5,475	98 98	Roofs, HSG		II, HSG C		
2	290,511	71	Weighted A				
	283,111	<i>'</i> '	97.45% Per				
	7,400		2.55% Impe				
	1,925		26.01% Und	connected			
-		~		o	ь . <i>.</i> .		
IC (min)	Length (feet)	Slop (ft/f		Capacity (cfs)	Description		
30.0	(ieet)	(101	(1/sec)	(015)	Direct Entry	,	
00.0					Direct Entry	,	
			Sumn	nary for S	Subcatchm	ent 34S: B.8	
unoff	=	1.17	cfs @ 12.09	9 hrs, Volu	ime=	0.092 af, Depth=	3.87"
				CS, Weigh	ted-CN, Time	Span= 0.00-72.00	hrs, dt= 0.05 hrs
ype III :	24-hr 10-	yr Rair	nfall=4.44"				
Δ	rea (sf)	CN	Description				
	9.724	98	Paved parki				
	1,396	68	>75% Grass				
	1,364	98	Unconnecte	ed pavemer	nt, HSG A		
	12,484	95	Weighted A	verage			
	1,396		11.18% Per				
	11,088		88.82% Imp		ea		
	1,364		12.30% Und	connected			
	Length	Slon	e Velocity	Canacity	Description		
Тс				(cfs)	Description		
		(ft/f		(=)			
Tc (min) 6.0	(feet)	(ft/f	(10360)		Direct Entry	',	
(min)		(ft/f			-		
(min)		<u>(ft/f</u>		nary for \$	-	∕, ent 35S: C.1	
<u>(min)</u> 6.0				•	Subcatchm		2.16"
(min) 6.0 cunoff	(feet) =	9.18	Sumn cfs @ 12.28	8 hrs, Volu	Subcatchm	ent 35S: C.1 0.977 af, Depth=	
(min) 6.0 Runoff Runoff b	(feet) = y SCS TF	9.18 R-20 m	Sumn cfs @ 12.28 ethod, UH=S	8 hrs, Volu	Subcatchm	ent 35S: C.1	
(min) 6.0 Runoff Runoff b	(feet) = y SCS TF	9.18 R-20 m	Sumn cfs @ 12.28	8 hrs, Volu	Subcatchm	ent 35S: C.1 0.977 af, Depth=	
(min) 6.0 Runoff Runoff b	(feet) = y SCS TF	9.18 R-20 m	Sumn cfs @ 12.28 ethod, UH=S	8 hrs, Volu	Subcatchm	ent 35S: C.1 0.977 af, Depth=	
(min) 6.0 Runoff Runoff b	(feet) = y SCS TF	9.18 R-20 m	Sumn cfs @ 12.28 ethod, UH=S	8 hrs, Volu	Subcatchm	ent 35S: C.1 0.977 af, Depth=	
(min) 6.0 Runoff Runoff b	(feet) = y SCS TF	9.18 R-20 m	Sumn cfs @ 12.28 ethod, UH=S	8 hrs, Volu	Subcatchm	ent 35S: C.1 0.977 af, Depth=	
(min) 6.0 Runoff Runoff b	(feet) = y SCS TF	9.18 R-20 m	Sumn cfs @ 12.28 ethod, UH=S	8 hrs, Volu	Subcatchm	ent 35S: C.1 0.977 af, Depth=	

6842-P		er voi	ır com	nanv	name her	۵۱			Ту	vpe III	24-h	r 10-	yr Rai	nfall=4.44"
					0 HydroCA		tware Sol	utions	LLC					Page 54
А	rea (sf)	CN	Adj	Desc	ription									
-	28,543	68	7.00		6 Grass co	ver,	Good, H	SG A						
*	69,229	89			6 Grass co			SG D						
*	16,469 14,141	82 98			ds, Good, onnected p			GΔ						
	7,926	98			s, HSG A	aven	ioni, no	07						
	36,308	78	77		hted Avera			ted						
2	214,241 22,067				6% Perviou % Impervio									
	14,141				8% Unconi									
Тс	Length	Slop		locity	Capacity	De	scription							
(min)	(feet)	(ft/f	t) (ft	/sec)	(cfs)									
20.0						Dir	ect Entr	у,						
			9	Sumr	nary for	Sub	catchn	nent	36S	: C.2				
Runoff	=	2.05	cfs @	12.0	9 hrs, Voli	ume=	-	0.15	7 af,	Depth	n= 3.	65"		
	y SCS TF 24-hr 10-				CS, Weigh	nted-0	CN, Time	e Spai	n= 0.	.00-72	.00 hr	s, dt=	0.05 l	nrs
A	rea (sf)	CN	Descr	iption										
	12,989	98			ing, HSG A									
*	3,687	68			s cover, G									
	2,989 2,851	98 98		, HSG	ed paveme A	пі, п	SG A							
	22,516	93			verage									
	3,687				vious Area									
	18,829 2,989				pervious Ar	ea								
	2,000													
	Length (feet)	Slop (ft/f	e Vel	locity /sec)	Capacity (cfs)	De	scription							
<u>(min)</u> 6.0	(leel)	(171	<u>()</u>	/sec)	(CIS)	Dir	ect Entr	v.						
0.0								,						
			9	Sumr	nary for	Sub	catchn	nent	37S	: C.3				
Runoff	=	0.98	cfs @	12.0	9 hrs, Voli	ume=	-	0.072	2 af,	Depth	n= 3.	04"		
	y SCS TF 24-hr 10-				CS, Weigh	nted-(CN, Time	e Spai	n= 0.	.00-72	.00 hr	s, dt=	0.05 ł	nrs
A	rea (sf)	CN	Descr	iption										
•	5,266	98			ing, HSG A									
•	4,754 509	68 98		Gras	s cover, G A	ood,	HSG A							
	1,900	98 98		, HSG										
	12,429	87			verage									
	4,754 7,675				vious Area ervious Ar									
	1,010		01.75	70 mmp	ei vious Al	ea								

			pany name he © 2020 HydroC		ftware Solu			r 10-yr Re	Page		6842 Prepa <u>Hydro</u>
_		e 11		_							
IC (min)	Length (feet)		ocity Capacit /sec) (cfs		escription						<u>(mi</u> 6
6.0				Di	rect Entry	у,					
		:	Summary fo	r Sul	ocatchm	nent 38S:	: C.4				
Runoff	=	0.45 cfs @	12.09 hrs, Vo	olume	=	0.037 af, I	Depth= 4.2	20"			Runo
		8-20 method, yr Rainfall=4	UH=SCS, Wei 44"	ghted	CN, Time	e Span= 0.0	00-72.00 hr	rs, dt= 0.05	hrs		Runo Type
A	rea (sf)	CN Desc	iption								
	4,655		l parking, HSG 0% Impervious								
	4,655		•								
Tc (min)	Length (feet)		ocity Capacit /sec) (cfs		escription						
6.0				<i></i>	rect Entry	y,					<u>(mi</u> 6
Runoff	=	0.57 cfs @	Summary fo 12.09 hrs, Vo	olume	=	0.047 af, 1	Depth= 4.2				Runo
Runoff b Type III 2	y SCS TR	0.57 cfs @ R-20 method, yr Rainfall=4 <u>CN Desc</u> 98 Pave	12.09 hrs, Vo UH=SCS, Weig 44"	olume ghted	= ·CN, Time	0.047 af, 1	Depth= 4.2		hrs		Runo Runo Type
Runoff b Type III 2	y SCS TR 24-hr 10- <u>y</u> <u>rea (sf)</u> 4,080 <u>1,777</u> 5,857	0.57 cfs @ R-20 method, yr Rainfall=4 <u>CN Desc</u> 98 Pave 98 Unco 98 Weig	12.09 hrs, Vo UH=SCS, Weig 44" iption I parking, HSG nected pavem ited Average	ghted ghted A hent, F	= -CN, Time 	0.047 af, 1	Depth= 4.2		hrs		Runo
Runoff b Type III 2	y SCS TR 24-hr 10- <u>y</u> rea (sf) 4,080 1,777	0.57 cfs @ -20 method, yr Rainfall=4 <u>CN Desc</u> 98 Pave 98 Unco 98 Weig 100.0	12.09 hrs, Vo UH=SCS, Wei 44" iption d parking, HSG innected pavem	ghted ghted A hent, H	= -CN, Time 	0.047 af, 1	Depth= 4.2		hrs		Runo Type
Runoff b Type III 2 A Tc (min)	y SCS TR 24-hr 10- <u>y</u> rea (sf) 4,080 1,777 5,857 5,857 5,857	0.57 cfs @ 2-20 method, yr Rainfall=4 <u>CN Desc</u> 98 Pave 98 Unco 98 Weig 100.0 30.34 Slope Ve	12.09 hrs, Vo UH=SCS, Wei 44" I parking, HSG <u>nnected pavem</u> ted Average 0% Impervious	A A A Anent, H Area Area d ty Da	= -CN, Time 	0.047 af, 1	Depth= 4.2		hrs		Runo Type
Runoff b Type III 2 A Tc	y SCS TR 24-hr 10- <u>y</u> 4,080 1,777 5,857 5,857 1,777 Length	0.57 cfs @ -20 method, yr Rainfall=4 <u>CN Desc</u> 98 Pave 98 Unco 98 Weig 100.0 30.34 Slope Ve (ft/ft) (ff	12.09 hrs, Vo UH=SCS, Wei 44" I parking, HSG <u>nected pavem</u> ted Average 0% Impervious % Unconnecte ocity Capacit (sec) (cfs	GA GA SA SArea SArea SArea S S Di Di	= CN, Time ISG A escription rect Entry	0.047 af, e Span= 0.0	Depth= 4.:		hrs		Runo Type
Runoff b Type III 2 A Tc (min)	y SCS TR 24-hr 10- <u>y</u> 4,080 1,777 5,857 5,857 1,777 Length	0.57 cfs @ -20 method, yr Rainfall=4 <u>CN Desc</u> 98 Pave 98 Unco 98 Weig 100.0 30.34 Slope Ve (ft/ft) (ff	12.09 hrs, Vo UH=SCS, Weig 44" iption d parking, HSG nnected paverr nted Average 0% Impervious % Unconnecte ocity Capacit	GA GA SA SArea SArea SArea S S Di Di	= CN, Time ISG A escription rect Entry	0.047 af, e Span= 0.0	Depth= 4.:		hrs		Runo Type
Runoff b Type III 2 A Tc (min)	y SCS TR 24-hr 10- <u>y</u> 4,080 1,777 5,857 5,857 1,777 Length	0.57 cfs @ 2-20 method, yr Rainfall=4 <u>CN Desc</u> 98 Pave 98 Unco 98 Weig 100.0 30.34 Slope Ve (ft/ft) (ff	12.09 hrs, Vo UH=SCS, Wei 44" I parking, HSG <u>nected pavem</u> ted Average 0% Impervious % Unconnecte ocity Capacit (sec) (cfs	ghted G A S Area S Area S Area S Di T Sul	= -CN, Time 	0.047 af, 1 e Span= 0.0 y, nent 40S:	Depth= 4.:	rs, dt= 0.05	hrs		Runo Type
Runoff b Type III 2 A Tc (min) 6.0 Runoff Runoff b	y SCS TR 24-hr 10- <u>1</u> 4,080 <u>1,777</u> 5,857 1,777 Length (feet) = y SCS TR	0.57 cfs @ 2-20 method, yr Rainfall=4 <u>CN Desc</u> 98 Pave 98 Unco 98 Weig 100.0 30.34 Slope Ve (ft/ft) (ff	12.09 hrs, Vo UH=SCS, Weig 44" iption 1 parking, HSG nected pavern ted Average 0% Impervious % Unconnecte ocity Capacit /sec) (cfs Summary fo 12.09 hrs, Vo UH=SCS, Weig	blume GA GA GA GA CA CA CA CA CA CA CA CA CA C	= CN, Time ISG A escription rect Entry ocatchm =	0.047 af, 1 e Span= 0.0 y, nent 40S: 0.033 af, 1	Depth= 4.: 00-72.00 hr : C.6 Depth= 4.:	rs, dt= 0.05			Runo Type
Runoff b Type III 2 A Tc (min) 6.0 Runoff Runoff b Type III 2	y SCS TR 24-hr 10 4,080 1,777 5,857 5,857 1,777 Length (feet) = y SCS TR 24-hr 10 rea (sf)	0.57 cfs @ 2-20 method, yr Rainfall=4. <u>CN Desc</u> 98 Pave 98 Unco 98 Weig 100.0 30.34 Slope Ve (ft/ft) (ff 0.39 cfs @ 2-20 method, yr Rainfall=4. <u>CN Desc</u>	12.09 hrs, Vo UH=SCS, Weie 44" iption I parking, HSG <u>nected pavem</u> ted Average 0% Impervious % Unconnecte ocity Capacit (sec) (cfs Summary fo 12.09 hrs, Vo UH=SCS, Weie 44" iption	blume ghted and s Area d blume plume ghted	= CN, Time ISG A escription rect Entry ocatchm =	0.047 af, 1 e Span= 0.0 y, nent 40S: 0.033 af, 1	Depth= 4.: 00-72.00 hr : C.6 Depth= 4.:	rs, dt= 0.05			Runo
Runoff b Type III 2 A Tc (min) 6.0 Runoff Runoff b Type III 2	y SCS TR 24-hr 10 4,080 1,777 5,857 1,777 Length (feet) = y SCS TR 24-hr 10 rea (sf) 4,047	0.57 cfs @ 2-20 method, yr Rainfall=4 <u>CN Desc</u> 98 Pave 98 Unco 98 Weig 100.0 30.34 Slope Ve (ft/ft) (ff 0.39 cfs @ 2-20 method, yr Rainfall=4 <u>CN Desc</u> 98 Pave	12.09 hrs, Vo UH=SCS, Weig 44" iption d parking, HSG <u>nected pavem</u> ted Average 0% Impervious % Unconnecte 0% Unconnecte ocity Capacit (sec) (cfs Summary fo 12.09 hrs, Vo UH=SCS, Weig 44" iption d parking, HSG	blume ghted a A nent, F a Area d ty Dr blume ghted a A	= -CN, Time 	0.047 af, 1 e Span= 0.0 y, nent 40S: 0.033 af, 1	Depth= 4.: 00-72.00 hr : C.6 Depth= 4.:	rs, dt= 0.05			Runo Type
Runoff b Type III 2 A Tc (min) 6.0 Runoff Runoff b Type III 2	y SCS TR 24-hr 10 4,080 1,777 5,857 5,857 1,777 Length (feet) = y SCS TR 24-hr 10 rea (sf)	0.57 cfs @ 2-20 method, yr Rainfall=4 <u>CN Desc</u> 98 Pave 98 Unco 98 Weig 100.0 30.34 Slope Ve (ft/ft) (ff 0.39 cfs @ 2-20 method, yr Rainfall=4 <u>CN Desc</u> 98 Pave	12.09 hrs, Vo UH=SCS, Weie 44" iption I parking, HSG <u>nected pavem</u> ted Average 0% Impervious % Unconnecte ocity Capacit (sec) (cfs Summary fo 12.09 hrs, Vo UH=SCS, Weie 44" iption	blume ghted a A nent, F a Area d ty Dr blume ghted a A	= -CN, Time 	0.047 af, 1 e Span= 0.0 y, nent 40S: 0.033 af, 1	Depth= 4.: 00-72.00 hr : C.6 Depth= 4.:	rs, dt= 0.05			Runo Type

(maine) (fo	gth Slope	Velocity		Description	I	-
<u>(min)</u> (fe 6.0	et) (ft/ft)	(ft/sec)	(cfs)	Direct Ent	ry,	
		Sumr	nary for S	Subcatchr	nent 41S: C.7	
unoff =	0.70 cf	s@ 12.0	9 hrs, Volu	ime=	0.058 af, Depth= 4.20"	
	S TR-20 met 10-yr Rainfa		CS, Weigh	ted-CN, Tim	e Span= 0.00-72.00 hrs, dt	= 0.05 hrs
Area (s	sf) CN E	Description				
6,0 1,1		Paved parki Roofs, HSG				
7,18 7,18		Veighted A		rea		
Tc Len (min) (fe	gth Slope eet) (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	I	
6.0				Direct Ent	ry,	
		Sumr	nary for S	Subcatchn	nent 42S: C.8	
unoff =	0.74 cf	s@ 12.0	9 hrs, Volu	ime=	0.061 af, Depth= 4.20"	
	S TR-20 met 10-yr Rainfa		CS, Weigh	ted-CN, Tim	e Span= 0.00-72.00 hrs, di	= 0.05 hrs
Area (s	sf) CN E	Description				
7,63		Paved park				
7,63	39 1	00.00% Im	pervious A	rea		
Tc Len (min) (fe	gth Slope eet) (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	I	
				Direct Ent	ry,	
6.0		Sumr	nary for S	Subcatchn	nent 43S: C.9	
6.0			9 hrs, Volu	ime=	0.070 af, Depth= 4.20"	
6.0 unoff =	0.85 cf	's @ 12.0				
unoff = unoff by SC		hod, UH=S	CS, Weigh	ted-CN, Tim	e Span= 0.00-72.00 hrs, di	= 0.05 hrs
unoff = unoff by SC ype III 24-hr Area (s	S TR-20 metl 10-yr Rainfa sf) CN [hod, UH=S all=4.44" Description			e Span= 0.00-72.00 hrs, di	= 0.05 hrs
unoff = unoff by SC ype III 24-hr	S TR-20 meti 10-yr Rainfa 6f) CN E 32 98 F	hod, UH=S all=4.44"	ing, HSG A	<u>.</u>	e Span= 0.00-72.00 hrs, di	= 0.05 hrs

				name here	e}) Software So	lutions LLC		Page 57
								Page 57
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	1		
6.0					Direct Ent	ry,		
			Summ	ary for S	ubcatchm	ent 44S:	C.10	
Runoff	=	0.52 cf	s@ 12.0	9 hrs, Volu	ime=	0.043 af,	Depth= 4.20)"
				CS, Weigh	ted-CN, Tim	e Span= 0.	00-72.00 hrs	, dt= 0.05 hrs
Type III 2	24-hr 10-	yr Rainfa	all=4.44"					
A	rea (sf)		Description					
	5,326 5,326			ng, HSG A				
	5,520	I	00.00% 11	ipervious A	lea			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	1		
6.0	(leet)	(1011)	(II/Sec)	(CIS)	Direct Ent	rv.		
			•					
			Summ	ary for S	ubcatchm	ient 45S:	C.11	
Runoff	=	0.26 cf	s@ 12.0	9 hrs, Volu	ime=	0.021 af,	Depth= 4.20)"
				CS, Weigh	ted-CN, Tim	e Span= 0.	00-72.00 hrs	, dt= 0.05 hrs
Type III 2	24-hr 10-	yr Rainfa	all=4.44"					
A	rea (sf)		Description					
	1,483			ng, HSG A				
	946 126			ng, HSG D d pavemer				
	76			d pavemer				
	2,631		Veighted A					
	2,631	1	00.00% Im	pervious A	rea			
	202	7	.68% Unco	onnected				
Тс	Length	Slope	Velocity	Capacity	Description	1		
(min) 6.0	(feet)	(ft/ft)	(ft/sec)	(cfs)	Direct Ent	nv.		
0.0			-			•	- ·-	
			Summ	ary for S	ubcatchm	ent 46S:	C.12	
Runoff	=	0.57 cf	s@ 12.0	9 hrs, Volu	ime=	0.048 af,	Depth= 4.20)"
							00-72.00 hrs	
Zunoff h	A CUC TE							

Prepared by {er	nter vour	company	name here	<u>-</u>]	7	ype III 24-	hr 10-yr Ra	untall=4.4
HydroCAD® 10.10					Solutions LL	2		Page (
Area (sf)	CN D	escription						
2,144			ing, HSG A					
2,121			ing, HSG D					
853			d pavemer					
696 96		Roofs, HSG	d pavemer	іі, на с D				
5,910		Veighted A						
5,910			pervious A	rea				
1,549	2	6.21% Und	connected					
Tc Length (min) (feet)		Velocity (ft/sec)	Capacity (cfs)	Descriptio	on			
6.0				Direct Er	ntry,			
		Summ	nary for S	ubcatch	ment 47S	6: C.13		
Runoff =	0.10 ef	10.00			0.016 -	Denth-	4.00"	
Runoli =	0.19 CI	s@ 12.0	9 hrs, Volu	ime=	0.016 a	, Depth=	4.20	
Runoff by SCS T Type III 24-hr 10			, 0	,			,	
	-yi i taima							
Area (sf)		escription						
Area (sf) 1,832	<u>CN</u> 98 P	escription aved parki	ing, HSG D					
Area (sf) 1,832 155	CN D 98 P 98 U	escription aved parki	ing, HSG D d pavemer					
Area (sf) 1,832	CN D 98 P 98 U 98 V	Description Paved parki Inconnecte Veighted A	ing, HSG D d pavemer	nt, HSG D				
Area (sf) 1,832 155 1,987	CN D 98 P 98 U 98 V 98 V	Description Paved parki Inconnecte Veighted A	ing, HSG D ed pavemer verage ipervious A	nt, HSG D				
Area (sf) 1,832 155 1,987 1,987 155	CN D 98 P 98 U 98 V 98 V 1 7	Description Paved parki Inconnecte Veighted A 00.00% Im .80% Uncc	ing, HSG D ed pavemer verage opervious A onnected	n <u>t, HSG D</u> .rea	on			
Area (sf) 1,832 155 1,987 1,987	CN D 98 P 98 U 98 V 1 7 Slope	Description Paved parki Inconnecte Veighted A 00.00% Im	ing, HSG D ed pavemer verage opervious A onnected	nt, HSG D	on			
Area (sf) 1,832 155 1,987 1,987 155 Tc Length	CN D 98 P 98 U 98 V 1 7 Slope	Description Paved parki Inconnecte Veighted A 00.00% Im .80% Unco Velocity	ing, HSG D ed pavemer verage opervious A onnected Capacity	n <u>t, HSG D</u> .rea				
Area (sf) 1,832 155 1,987 1,987 1,987 155 Tc Length (min) (feet)	CN D 98 P 98 U 98 V 1 7 Slope	Description Paved parki Inconnecte Veighted A 00.00% Im .80% Uncc Velocity (ft/sec)	ing, HSG D d pavemer verage pervious A pnnected Capacity (cfs)	nt, HSG D rea Descriptio Direct Er		5: C.14		
Area (sf) 1,832 1,987 1,987 1,987 1,55 Tc Length (min) (feet)	<u>CN</u> <u>D</u> 98 P 98 U 98 V 1 7 Slope (ft/ft)	Description aved parki Inconnecte Veighted A 00.00% Im .80% Uncc Velocity (ft/sec)	ing, HSG D d pavemer verage pervious A pnnected Capacity (cfs)	nt, HSG D Irea Descriptio Direct Er Subcatch	ntry, ment 485	5: C.14	4.20"	
Area (sf) 1,832 155 1,987 1,987 155 Tc Length (min) (feet) 6.0 Runoff =	CN E 98 P 98 U 98 U 98 U 98 U 98 (f/f) Slope (ft/ft) 0.18 cf:	Pescription Paved parki Inconnecte Veighted A 00.00% Im .80% Uncc Velocity (ft/sec) Summ s @ 12.09	ing, HSG D ad pavemer verage pervious A onnected Capacity (cfs) hary for S	nt, HSG D rea Descriptio Direct Er Subcatch	ntry, ment 485 0.015 at	, Depth=		
Area (sf) 1,832 155 1,987 1,987 1,987 155 Tc Length (min) (feet) 6.0 Runoff = Runoff by SCS T	CN E 98 P 98 V 0.18 cfr R-20 meth	Description Paved parki Inconnecte Veighted A 00.00% Im .80% Uncc Velocity (ft/sec) Summ s @ 12.09 nod, UH=S	ing, HSG D ad pavemer verage pervious A onnected Capacity (cfs) hary for S	nt, HSG D rea Descriptio Direct Er Subcatch	ntry, ment 485 0.015 at	, Depth=		hrs
Area (sf) 1,832 155 1,987 1,987 1,987 155 Tc Length (min) (feet) 6.0 Runoff = Runoff by SCS T	CN E 98 P 98 U 99 U 0.18 cfr -yr Rainfa	Description Paved parki Inconnecte Veighted A 00.00% Im .80% Uncc Velocity (ft/sec) Summ s @ 12.09 nod, UH=S	ing, HSG D d pavemer verage ipervious A onnected Capacity (cfs) hary for S 9 hrs, Volu CS, Weigh	nt, HSG D rea Descriptio Direct Er Subcatch	ntry, ment 485 0.015 at	, Depth=		hrs
Area (sf) 1,832 155 1,987 1,987 1,987 155 Tc Length (min) (feet) 6.0 Runoff = Runoff by SCS T Type III 24-hr 10 <u>Area (sf)</u> 1,744	CN D 98 P 98 V 0.18 cfr R-20 mett -yr Rainfa CN D 98 P	Description Paved parki Inconnecte Veighted A 00.00% Im .80% Uncc Velocity (ft/sec) Summ s @ 12.09 nod, UH=S III=4.44" Description Paved parki	ing, HSG D id pavemer verage upervious A onnected Capacity (cfs) hary for S 9 hrs, Volu CS, Weigh ing, HSG D	nt, HSG D Description Direct Er Subcatch Ime= ted-CN, Tin	ntry, ment 485 0.015 at	, Depth=		hrs
Area (sf) 1,832 155 1,987 1,987 1,987 155 Tc Length (min) (feet) 6.0 Runoff = Runoff by SCS T Type III 24-hr 10 Area (sf) 1,744 141	CN E 98 P 98 V 0.18 cft R-20 method -yr Rainfa CN E 98 V 98 V	Description Paved parki Jnconnecte Veighted A 00.00% Im .80% Uncc Velocity (ft/sec) Summ s @ 12.09 nod, UH=S Ill=4.44" Description aved parki Inconnecte	ing, HSG D id pavemer verage upervious A capacity (cfs) arry for S 9 hrs, Volu CS, Weigh ing, HSG D id pavemer	nt, HSG D Description Direct Er Subcatch Ime= ted-CN, Tin	ntry, ment 485 0.015 at	, Depth=		hrs
Area (sf) 1,832 155 1,987 1,987 155 Tc Length (min) (feet) 6.0 Runoff Runoff Area (sf) 1,744 1,885	CN D 98 P 98 V 0.18 cfr R-20 mettric -yr Rainfa CN D 98 P 98 P 98 V 98 V	Description Paved parki Inconnecte Veighted A 00.00% Im .80% Uncc Velocity (ft/sec) Summ s @ 12.09 nod, UH=S III=4.44" Description Paved parki Inconnecte Veighted A	ing, HSG D d pavemer verage ppervious A connected Capacity (cfs) hary for S 9 hrs, Volu CS, Weigh ing, HSG D id pavemer verage	nt, HSG D Jescriptio Direct Er Subcatch Ime= ted-CN, Tiu	ntry, ment 485 0.015 at	, Depth=		hrs
Area (sf) 1,832 155 1,987 1,987 1,987 155 Tc Length (min) (feet) 6.0 Runoff = Runoff by SCS T Type III 24-hr 10 Area (sf) 1,744 141	CN D 98 P 98 U 98 U 98 U 98 U 1 7 Slope (ft/ft) 0.18 cfr V Rainfa -yr Rainfa ON D 98 P 98 U 98 U 98 U 98 U 98 U 98 U	Description Paved parki Inconnecte Veighted A 00.00% Im .80% Uncc Velocity (ft/sec) Summ s @ 12.09 nod, UH=S III=4.44" Description Paved parki Inconnecte Veighted A	ing, HSG D d pavemer verage pervious A onnected Capacity (cfs) hary for S 9 hrs, Volu CS, Weigh cS, Weigh ing, HSG D d pavemer verage pervious A	nt, HSG D Jescriptio Direct Er Subcatch Ime= ted-CN, Tiu	ntry, ment 485 0.015 at	, Depth=		hrs

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=4.44"

(min)	Length (feet)	Slope (ft/ft)	e Veloci) (ft/se		apacity (cfs)	Descri	ption				
6.0						Direct	Entry	y,			
			Sun	nmar	y for S	Subcate	chme	ent 49S:	C.15		
Runoff	=	0.34 c	cfs @ 12	2.09 hi	rs, Volu	ume=		0.028 af,	Depth= 4	.20"	
			thod, UH fall=4.44		, Weigh	ited-CN,	Time	Span= 0.	00-72.00 h	rs, dt= 0.05	hrs
A	rea (sf)		Descripti								
	3,220 267		Paved pa Unconne				D				
	3,487 3,487 267	98	Weighted 100.00% 7.66% U	l Aver Impei	age rvious A						
Tc (min)	Length (feet)	Slope (ft/ft)			apacity (cfs)	Descri	ption				
6.0						Direct	Entry				
						Direct	LIIU	y ,			
			Sun	nmar	y for S		-	, ent 50S:	C.16		
Runoff	_	0 34 c				Subcate	chme	ent 50S:		20"	
Runoff	=		cfs @ 12	2.09 hi	rs, Volu	Subcato	chme	ent 50S: 0.028 af,	Depth= 4		hus
Runoff b	y SCS TF	R-20 me	cfs @ 12	2.09 hi =SCS	rs, Volu	Subcato	chme	ent 50S: 0.028 af,	Depth= 4	.20" rs, dt= 0.05	hrs
Runoff b Type III 2	y SCS TF	R-20 me yr Rainf	cfs @ 12 thod, UH	2.09 hi =SCS	rs, Volu	Subcato	chme	ent 50S: 0.028 af,	Depth= 4		hrs
Runoff b Type III 2	y SCS TF 24-hr 10- <u>rea (sf)</u> 3,238	R-20 me yr Rainf <u>CN</u> 98	ofs @ 12 hthod, UH fall=4.44" <u>Descripti</u> Paved pa	2.09 hi =SCS <u>on</u> arking,	, Weigh	Subcato ume= uted-CN,	chme	ent 50S: 0.028 af,	Depth= 4		hrs
Runoff b Type III 2	y SCS TF 24-hr 10- rea (sf)	R-20 me yr Rainf <u>CN</u> 98 98	cfs @ 12 thod, UH fall=4.44" Descripti	2.09 hr =SCS on arking, cted p	, Weigh , Weigh HSG E	Subcato ume= uted-CN,	chme	ent 50S: 0.028 af,	Depth= 4		hrs
Runoff b Type III 2	y SCS TF 24-hr 10- <u>rea (sf)</u> 3,238 270	R-20 me yr Rainf <u>CN</u> 98 98 98	ofs @ 12 thod, UH fall=4.44" <u>Descripti</u> Paved pa <u>Unconne</u>	2.09 hr =SCS on arking, cted p I Aver Imper	rs, Volu , Weigh HSG E baveme age rvious A	Subcato ume= nted-CN, nt, HSG	chme	ent 50S: 0.028 af,	Depth= 4		hrs
Runoff b Гуре III 2 А	y SCS TF 24-hr 10- rea (sf) 3,238 270 3,508 3,508	R-20 me yr Rainf <u>CN</u> 98 98 98	ofs @ 12 thod, UH fall=4.44" <u>Descripti</u> Paved pa <u>Unconne</u> Weighted 100.00% 7.70% U	2.09 hr =SCS on arking, cted p d Aver Imper nconn ty Ca	rs, Volu , Weigh HSG E baveme age rvious A	Subcato ume= nted-CN, nt, HSG	Time	ent 50S: 0.028 af,	Depth= 4		hrs
Runoff b Type III 2 A Tc	y SCS TF 24-hr 10- 3,238 270 3,508 3,508 270 Length	R-20 me yr Rainf <u>CN</u> 98 98 98 98 Slope	ofs @ 12 thod, UH fall=4.44" <u>Descripti</u> Paved pa <u>Unconne</u> Weighted 100.00% 7.70% U	2.09 hr =SCS on arking, cted p d Aver Imper nconn ty Ca	rs, Volu , Weigh HSG I aveme age vious A ected apacity	Subcato ume= nted-CN, nt, HSG	Time	ent 50S: 0.028 af, Span= 0.	Depth= 4		hrs
Runoff b Fype III 2 A Tc (min)	y SCS TF 24-hr 10- 3,238 270 3,508 3,508 270 Length	R-20 me yr Rainf <u>CN</u> 98 98 98 98 Slope	cfs @ 12 thod, UH fall=4.44" <u>Descripti</u> Paved pa <u>Unconne</u> Weightec 100.00% 7.70% U e Veloci) (ft/se	2.09 hi =SCS on arking, cted p d Aver Imper nconn ty Ca c)	rs, Volu , Weigh HSG I baveme age rvious A ected apacity (cfs)	Subcato ume= hted-CN, nt, HSG vrea Descrij Direct	Time D Dtion	ent 50S: 0.028 af, Span= 0.	Depth= 4 00-72.00 h		hrs
Runoff b Fype III 2 A Tc (min)	y SCS TF 24-hr 10- 3,238 270 3,508 3,508 270 Length	R-20 me yr Rainf 98 98 98 Slope (ft/ft)	cfs @ 12 thod, UH fall=4.44" <u>Descripti</u> Paved pa <u>Unconne</u> Weightec 100.00% 7.70% U e Veloci) (ft/se	2.09 hr =SCS on arking, <u>cted p</u> d Aver Imper nconn ty Ca c) mma	rs, Volu , Weigh HSG E vaveme age vious A ected apacity (cfs)	Subcato ume= hted-CN, nt, HSG vrea Descrip Direct Subcat	Time D ption Entry chm	ent 50S: 0.028 af, Span= 0. y, ent 51S:	Depth= 4 00-72.00 h	rs, dt= 0.05	hrs

6842-Post	Type III 24-hr 10-yr Rainfall=4.44"
	ter your company name here} 3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 60
Area (of)	CN Description
<u>Area (sf)</u> 1,527	CN Description 98 Unconnected pavement, HSG A
* 182,934	68 >75% Grass cover, Good, HSG A
* 518	79 >75% Grass cover, Good, HSG B
* 51,440 * 160,796	 89 >75% Grass cover, Good, HSG D 43 Woods, Good, HSG A
* 5,106	65 Woods, Good, HSG B
* 450	82 Woods, Good, HSG D
402,771	61 Weighted Average
401,244 1,527	99.62% Pervious Area 0.38% Impervious Area
1,527	100.00% Unconnected
Tc Length (min) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)
(min) (feet) 20.0	Direct Entry,
	Summary for Subactabulant 52St B.0
	Summary for Subcatchment 52S: B.9
Runoff =	1.34 cfs @ 12.09 hrs, Volume= 0.102 af, Depth= 3.54"
Runoff by SCS TF Type III 24-hr 10-	R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs yr Rainfall=4.44"
Area (sf)	CN Description
10,973	98 Paved parking, HSG A
* 2,895	68 >75% Grass cover, Good, HSG A 98 Unconnected pavement, HSG A
<u> </u>	92 Weighted Average
2,895	19.28% Pervious Area
12,123	80.72% Impervious Area
1,150	9.49% Unconnected
Tc Length	Slope Velocity Capacity Description
(min) (feet) 6.0	(ft/ft) (ft/sec) (cfs) Direct Entry,
0.0	Direct Entry,
5	Summary for Pond 4P: Constructed Stormwater Wetland #2
Inflow Area =	2.341 ac, 79.77% Impervious, Inflow Depth = 3.06" for 10-yr event
Inflow = Outflow =	7.09 cfs @ 12.09 hrs, Volume= 0.596 af
Outflow = Primary =	0.54 cfs @ 13.36 hrs, Volume= 0.595 af, Atten= 92%, Lag= 76.0 min 0.54 cfs @ 13.36 hrs, Volume= 0.595 af
	nd method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs 2' @ 13.36 hrs Surf.Area= 8,926 sf Storage= 13,989 cf
	on time= 344.0 min calculated for 0.595 af (100% of inflow) et. time= 342.4 min (1,109.0 - 766.6)

HydroCA	D® 10.10-3a	s/n 03590	© 2020 I	lydroCAD Software Sc	lutions LLC		Page 6'
Volume	Invert	Avail	.Storage	Storage Description	ı		
#1	212.50	3	1,125 cf	Custom Stage Dat	ta (Irregular)Listed	below (Recalc)	
Elevatio (fee		urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
212.5	/	6,500	322.0		0	6,500	
214.0 216.0		8,459 11,559	362.0 453.0		11,187 31,125	8,737 14,695	
Device	Routing	Inv	ert Out	et Devices			
#1	Primary	215.	50' 20.0	long x 12.0' bread			ir
				d (feet) 0.20 0.40 (
#2	Device 3	214.		f. (English) 2.57 2.6 Iong Sharp-Crested			on(s)
#3	Primary	212.	50' 15.0	" Round Culvert	Ū		
				111.0' CPP, projecti			
				t / Outlet Invert= 212.).013, Flow Area= 1.		.0186 7 Cc= 0.9	UU
				1.010, 110W Alca - 1.			
-1=Br -3=Cu -2=	oad-Creste Ilvert (Pass Sharp-Cres	d Rectang es 0.54 cfs sted Recta	ofs @ 13.3 Jular Wei s of 5.10 Angular V	' Vert. Orifice/Grate 36 hrs HW=214.32' r (Controls 0.00 cfs) cfs potential flow) Veir (Controls 0.00 c 0.54 cfs @ 6.20 fps)	(Free Discharge) fs)	d to weir flow at lo	w heads
Primary 1=Bro 3=Cu	OutFlow Moad-Creste	lax=0.54 d d Rectang es 0.54 cf s ted Rect a	ofs @ 13.3 Jular Wei s of 5.10 angular V e Controls	36 hrs HW=214.32' r (Controls 0.00 cfs) cfs potential flow) Veir (Controls 0.00 c	(Free Discharge) fs)	d to weir flow at ic	w heads
Primary 1=Bro 3=Cu	outFlow M oad-Creste Ilvert (Pass Sharp-Cres Orifice/Gra	lax=0.54 d d Rectang es 0.54 cfs sted Recta te (Orifice 7.170 ac,	ofs @ 13.3 gular Wei s of 5.10 (angular V controls Sumn 31.40% (36 hrs HW=214.32' r (Controls 0.00 cfs) cfs potential flow) Veir (Controls 0.00 c 0.54 cfs @ 6.20 fps) nary for Pond 5P Impervious, Inflow D	(Free Discharge) fs) : Wet Basin epth = 2.43" for	d to weir flow at lo	w heads
Primary 1=Brd 3=Cu 2= 4= Inflow Au	OutFlow N oad-Creste Ilvert (Pass Sharp-Crest Orifice/Gra	lax=0.54 d d Rectang es 0.54 cfs sted Recta te (Orifice 7.170 ac, 1.71 cfs @	ofs @ 13.3 gular Wei s of 5.10 (angular V controls Sumn 31.40% (2.25 h	36 hrs HW=214.32' r (Controls 0.00 cfs) cfs potential flow) Veir (Controls 0.00 c 0.54 cfs @ 6.20 fps) nary for Pond 5P Impervious, Inflow D rrs, Volume=	(Free Discharge) fs) : Wet Basin epth = 2.43" for 1.451 af	10-yr event	
Primary 1=Bro 3=Cu 1-2= 4=	OutFlow N oad-Creste Ilvert (Pass Sharp-Cres Orifice/Gra	1ax=0.54 d d Rectang es 0.54 cf. ited Recta te (Orifice 7.170 ac, 1.71 cfs @ 3.19 cfs @	cfs @ 13.3 gular Wei s of 5.10 (angular V Controls Sumn 31.40% (2 12.25 h 12.49 h	36 hrs HW=214.32' r (Controls 0.00 cfs) cfs potential flow) Veir (Controls 0.00 c 0.54 cfs @ 6.20 fps) nary for Pond 5P Impervious, Inflow D	(Free Discharge) fs) : Wet Basin epth = 2.43" for	10-yr event	
Primary 1=Bro 3=Cu 2= 4= Inflow Ad Inflow Outflow Primary	outFlow N oad-Creste ilvert (Pass Sharp-Cress Orifice/Gra	lax=0.54 c d Rectang es 0.54 cf: sted Recta te (Orifice 7.170 ac, 1.71 cfs @ 3.19 cfs @	ofs @ 13.: gular Wei s of 5.10 angular V c Controls Sumn 31.40% I 2 12.25 I 2 12.49 I 12.49 I	36 hrs HW=214.32' r (Controls 0.00 cfs) cfs potential flow) Veir (Controls 0.00 c 0.54 cfs @ 6.20 fps) nary for Pond 5P Impervious, Inflow D rrs, Volume= rrs, Volume= rrs, Volume=	(Free Discharge) fs) : Wet Basin epth = 2.43" for 1.451 af 1.451 af, Atten= ; 1.451 af	10-yr event	
Primary 1=Bro 3=Cu 2= 4= Inflow Al Inflow Outflow Primary Routing	outFlow N oad-Creste ilvert (Pass Sharp-Crest Orifice/Gra rea = = 1 = 1 = 1 = 1 = 1 = 1	lax=0.54 c d Rectang es 0.54 cfi ited Recta te (Orifice 7.170 ac, 1.71 cfs @ 3.19 cfs @ 3.19 cfs @ method, T	ofs @ 13.3 Jular Wei s of 5.10 angular V Controls Sumn 31.40% 12.25 H 12.49 H 12.49 H 12.49 H 12.49 H	36 hrs HW=214.32' r (Controls 0.00 cfs) cfs potential flow) Veir (Controls 0.00 c 0.54 cfs @ 6.20 fps) nary for Pond 5P Impervious, Inflow D rrs, Volume= rs, Volume=	(Free Discharge) fs) : Wet Basin epth = 2.43" for 1.451 af 1.451 af, Atten= 3 1.451 af : 0.05 hrs	10-yr event	
Primary 1=Br 3=Cu 2= 4= Inflow Al Inflow Outflow Primary Routing Peak Ele Plug-Flo	rea = = 1 = 4 by Stor-Ind ev= 215.03'	lax=0.54 d d Rectang es 0.54 dc tet Recta te (Orifice 7.170 ac, 1.71 cfs @ 3.19 cfs @ 3.19 cfs @ method, T @ 12.49 h time= 27.	cfs @ 13.: yular Wei s of 5.10 angular V Controls Summ 31.40% 12.25 12.49 12.49 12.49 12.49 Summ Summ Summ 31.40% 12.49 12.49 21.40 str 31.40% 21.40 str 31.40% 21.40 str 31.40% 21.40 str 31.40% <td< td=""><td>36 hrs HW=214.32' r (Controls 0.00 cfs) cfs potential flow) Veir (Controls 0.00 c 0.54 cfs @ 6.20 fps) nary for Pond 5P Impervious, Inflow D nrs, Volume= nrs, Volume= nrs, Volume= urs, Volume= = 0.00-72.00 hrs, dt=</td><td>(Free Discharge) fs) : Wet Basin epth = 2.43" for 1.451 af, Atten= 3 1.451 af, Atten= 3 1.451 af e 0.05 hrs rrage= 11,160 cf</td><td>10-yr event</td><td></td></td<>	36 hrs HW=214.32' r (Controls 0.00 cfs) cfs potential flow) Veir (Controls 0.00 c 0.54 cfs @ 6.20 fps) nary for Pond 5P Impervious, Inflow D nrs, Volume= nrs, Volume= nrs, Volume= urs, Volume= = 0.00-72.00 hrs, dt=	(Free Discharge) fs) : Wet Basin epth = 2.43" for 1.451 af, Atten= 3 1.451 af, Atten= 3 1.451 af e 0.05 hrs rrage= 11,160 cf	10-yr event	
Primary 1=Br 3=Cu 2= 4= Inflow Al Inflow Outflow Primary Routing Peak Ele Plug-Flo	rea = = 1 = 4 by Stor-Ind ev= 215.03'	lax=0.54 d d Rectanges 0.54 df ted Recta te (Orifice 7.170 ac, 1.71 cfs @ 3.19 cfs @ 3.19 cfs @ 3.19 cfs @ 12.49 h time= 27. time= 27.	cfs @ 13.: yular Wei s of 5.10 angular V Controls Summ 31.40% 12.25 12.49 12.49 12.49 12.49 Summ Summ Summ 31.40% 12.49 12.49 21.40 str 31.40% 21.40 str 31.40% 21.40 str 31.40% 21.40 str 31.40% <td< td=""><td>36 hrs HW=214.32' r (Controls 0.00 cfs) cfs potential flow) Veir (Controls 0.00 c 0.54 cfs @ 6.20 fps) mary for Pond 5P Impervious, Inflow D nrs, Volume= nrs, Volume= hrs, Volume= ars, Volume= hrs, Volume= ars, Volume= hrs, Vol</td><td>(Free Discharge) fs) : Wet Basin epth = 2.43" for 1.451 af, Atten= 3 1.451 af, Atten= 3 1.451 af 0.05 hrs wage= 11,160 cf 100% of inflow)</td><td>10-yr event</td><td></td></td<>	36 hrs HW=214.32' r (Controls 0.00 cfs) cfs potential flow) Veir (Controls 0.00 c 0.54 cfs @ 6.20 fps) mary for Pond 5P Impervious, Inflow D nrs, Volume= nrs, Volume= hrs, Volume= ars, Volume= hrs, Volume= ars, Volume= hrs, Vol	(Free Discharge) fs) : Wet Basin epth = 2.43" for 1.451 af, Atten= 3 1.451 af, Atten= 3 1.451 af 0.05 hrs wage= 11,160 cf 100% of inflow)	10-yr event	
Primary 1=Br 3=Cu 4= Inflow Ad Inflow Outflow Primary Routing Peak Ele Plug-Flo Center-co	rea = = 1 = 4 = 4 = 4 = 4 = 4 = 4 = 4 = 4 = 4 = 4	lax=0.54 d d Rectang se 0.54 d tet Recta te (Orifice 7.170 ac, 1.71 cfs @ 3.19 cfs @ 3.19 cfs @ method, T @ 12.49 h time= 27. time= 27. Avail	offs @ 13.: yular Weils of 5.10 (angular V) s of 5.10 (angular V) Controls Summ 31.40% (angular V) 31.40% (angular V) 2.25 (bngular V) 2 12.25 (bngular V) 2 12.25 (bngular V) 2 12.49 (bngular V) 2 12.49 (bngular V) 3 12.49 (bngular V) 7 min calk 3 min (angular V)	36 hrs HW=214.32' r (Controls 0.00 cfs) cfs potential flow) Veir (Controls 0.00 c 0.54 cfs @ 6.20 fps) mary for Pond 5P Impervious, Inflow D nrs, Volume= nrs, Volume= hrs, Volume= ars, Volume= hrs, Volume= ars, Volume= hrs, Vol	(Free Discharge) fs) : Wet Basin epth = 2.43" for 1.451 af, Atten= 3 1.451 af, Atten= 3 1.451 af 0.05 hrs irage= 11,160 cf 100% of inflow)	10-yr event 30%, Lag= 14.4 r	
Primary 1=Br 3=Cu 2= 4= Inflow Ad Inflow Outflow Primary Routing Peak Ele Plug-Flo Center-co Volume #1 Elevatic	rea = = 1 = 4 = 4 = 4 = 4 = 4 = 4 = 4 = 4 = 4 = 4	lax=0.54 d d Rectang es 0.54 df ted Recta te (Orifice 7.170 ac, 1.71 cfs @ 3.19 cfs @ 3.19 cfs @ 3.19 cfs @ 12.49 h time= 27. time= 27. Avail urf.Area	cfs @ 13.: jular Wei s of 5.10 (angular V Controls Sumn 31.40% (2 12.25 f) 2 12.25 f) 1 2.49 f 1 2.49 f ime Span irs Surf 7 min cald 3 min (84 <u>Storage</u> 3,930 cf Perim.	36 hrs HW=214.32' r (Controls 0.00 cfs) cfs potential flow) Veir (Controls 0.00 c 0.54 cfs @ 6.20 fps) mary for Pond 5P Impervious, Inflow D nrs, Volume= nrs, Volume= ars, Vol	(Free Discharge) fs) : Wet Basin epth = 2.43" for 1.451 af, Atten= 3 1.451 af, A	10-yr event 30%, Lag= 14.4 i below (Recalc) Wet.Area	
Primary 1=Bm 3=Cu 2= 4= Inflow Outflow Primary Routing Peak Ele Plug-Flo Center-c Volume #1 Elevatic (fee	rea = by Stor-Ind ev= 215.03' w detention of-Mass det. Invert 214.00' on S et)	lax=0.54 d d Rectang es 0.54 df ited Recta te (Orifice 7.170 ac, 1.71 cfs @ 3.19 cfs @ 3.19 cfs @ 3.19 cfs @ method, T @ 12.49 h time= 27. time= 27. Avail 00 urf.Area (sq-ft)	offs @.13.: yular Weils s of 5.10 i s of 5.10 i angular V Controls Summ 31.40% i 2 12.49 i i 2 12.49 i i 2 12.49 i i 3 min (84 Storage 3,930 cf Perim	36 hrs HW=214.32' r (Controls 0.00 cfs) cfs potential flow) Veir (Controls 0.00 c 0.54 cfs @ 6.20 fps) mary for Pond 5P Impervious, Inflow D rs, Volume= rs, Volume= rs, Volume= is, Volume= 12,562 sf Stc culated for 1.451 af (1 3.5 - 816.2) Storage Description Custom Stage Dat Inc.Store (cubic-feet)	(Free Discharge) fs) : Wet Basin epth = 2.43" for 1.451 af, Atten= 3 1.451 af,	10-yr event 30%, Lag= 14.4 r below (Recalc) Wet.Area (sq-ft)	
Primary 1=Brr 3=Cu 2= 4= Inflow Au Inflow Outflow Primary Routing Peak Ele Plug-Flo Center-co Volume #1 Elevatic (fee 214.0	rea = by Stor-Ind ev= 215.03' w detention of-Mass det. Invert 214.00' on S bt) 00	lax=0.54 d d Rectard es 0.54 d tet Rectat fe (Orifice 7.170 ac, 1.71 cfs @ 3.19 cfs @ 3.19 cfs @ 3.19 cfs @ 12.49 h time= 27. time= 27. Avail 10 urf.Area (sq-ft) 9,189	cfs @ 13.: yular Wei s of 5.10 0 angular V Controls Summ 31.40% 12.25 f 212.49 f 12.49 f 13.40 c 13.40 c 14.40 c 1	36 hrs HW=214.32' r (Controls 0.00 cfs) cfs potential flow) Veir (Controls 0.00 c 0.54 cfs @ 6.20 fps) nary for Pond 5P Impervious, Inflow D rrs, Volume= rrs, Volume= rrs, Volume= ars, Volume ars, Volume= ars, Vol	(Free Discharge) fs) : Wet Basin epth = 2.43" for 1.451 af 1.451 af, Atten= : 1.451 af 1.451 af	10-yr event 30%, Lag= 14.4 r below (Recalc) Wet.Area (sq-ft) 9,189	
Primary 1=Brr 3=Cu 2= 4= Inflow At Inflow Outflow Primary Routing Peak Elev Plug-Flo Center-co Volume #1 Elevatic (fee	rea = = 1 by Stor-Ind eve = 215.03' w detention of-Mass det. Invert 214.00' on S b) 00 00	lax=0.54 d d Rectang es 0.54 df ited Recta te (Orifice 7.170 ac, 1.71 cfs @ 3.19 cfs @ 3.19 cfs @ 3.19 cfs @ method, T @ 12.49 h time= 27. time= 27. Avail 00 urf.Area (sq-ft)	offs @.13.: yular Weils s of 5.10 i s of 5.10 i angular V Controls Summ 31.40% i 2 12.49 i i 2 12.49 i i 2 12.49 i i 3 min (84 Storage 3,930 cf Perim	36 hrs HW=214.32' r (Controls 0.00 cfs) cfs potential flow) Veir (Controls 0.00 c 0.54 cfs @ 6.20 fps) mary for Pond 5P Impervious, Inflow D trs, Volume= trs, Vol	(Free Discharge) fs) : Wet Basin epth = 2.43" for 1.451 af, Atten= 3 1.451 af,	10-yr event 30%, Lag= 14.4 r below (Recalc) Wet.Area (sq-ft)	

			ny name here} 2020 HydroCAD Software Solutions LLC	Daga 62			
iyuroc <i>P</i>	10.10-3a	<u>s/11 03590 @ 2</u>	2020 Hydrocad Software Solutions LEC	Page 62			
Device	0		Outlet Devices				
#1	Primary	213.43'	24.0" Round Culvert L= 580.0" CPP, projecting, no headwa Inlet / Outlet Invert= 213.43' / 211.63' n= 0.013, Flow Area= 3.14 sf				
#2	Device 1	214.00'	45.0 deg x 4.0' long Sharp-Crested V	ee/Trap Weir			
#3	Device 1	215.50'	Cv= 2.56 (C= 3.20) 4.2' long x 4.2' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2. 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.37 2.53 2.69 2.68 2.67 2.67 2.65 2.66 2.66 2.67 2.71 2.72 2.74 2.77 2.85 3.01 3.23				
-1=Ci -1=Ci	ulvert (Barre =Sharp-Cres	l Controls 8.1 ted Vee/Trap	 12.49 hrs HW=215.03' (Free Dischal 8 cfs @ 4.16 fps) Weir (Passes 8.18 cfs of 14.50 cfs pote ular Weir (Controls 0.00 cfs) 				
	Su	mmary for	Pond 7P: Constructed Stormwate	er Wetland #1			
nflow A			79% Impervious, Inflow Depth = 2.21"	for 10-yr event			
nflow Dutflow			2.10 hrs, Volume= 2.191 af				
rimary			2.14 hrs, Volume= 2.191 af, Att 2.14 hrs, Volume= 2.191 af	ten= 8%, Lag= 2.4 min			
Routing	by Stor-Ind i	method. Time	Span= 0.00-72.00 hrs, dt= 0.05 hrs / 3				
Peak ĔĬ	ev= 215.37' (Surf.Area= 12,086 sf Storage= 6,222 c	f			
lug-Flo	ow detention	@ 12.14 hrs time= 35.1 mi					
lug-Flo	ow detention of-Mass det.	@ 12.14 hrs time= 35.1 mi time= 34.8 mi	Surf.Area= 12,086 sf Storage= 6,222 c in calculated for 2.191 af (100% of inflow in (862.0 - 827.3)				
Plug-Flo Center-o	ow detention of-Mass det.	@ 12.14 hrs time= 35.1 mi time= 34.8 mi Avail.Sto	Surf.Area= 12,086 sf Storage= 6,222 c in calculated for 2.191 af (100% of inflow in (862.0 - 827.3))			
Plug-Flo Center-o <u>(olume</u> #1 Elevatio	ow detention of-Mass det. <u>Invert</u> 214.80' on St	@ 12.14 hrs time= 35.1 mi time= 34.8 mi <u>Avail.Sto</u> 14,75 urf.Area P	Surf.Area= 12,086 sf Storage= 6,222 c in calculated for 2.191 af (100% of inflow in (862.0 - 827.3) rage Storage Description 59 cf Custom Stage Data (Irregular)L erim. Inc.Store Cum.Store) isted below (Recalc) e Wet.Area			
Plug-Flo Center-o <u>/olume</u> #1 Elevatio (fee	ow detention of-Mass det. <u>Invert</u> 214.80' on St et)	@ 12.14 hrs time= 35.1 mi time= 34.8 mi <u>Avail.Sto</u> 14,7 urf.Area P (sq-ft)	Surf.Area= 12,086 sf Storage= 6,222 c in calculated for 2.191 af (100% of inflow in (862.0 - 827.3) rage Storage Description 59 cf Custom Stage Data (Irregular)L erim. Inc.Store Cum.Store (feet) (cubic-feet) (cubic-feet)) isted below (Recalc) e Wet.Area :) (sq-ft)			
lug-Flo enter-o <u>olume</u> #1 Elevatio	ow detention of-Mass det. <u>Invert</u> 214.80' on Si et) 80	@ 12.14 hrs time= 35.1 mi time= 34.8 mi <u>Avail.Sto</u> 14,75 urf.Area P (sq-ft) 9,939	Surf.Area= 12,086 sf Storage= 6,222 c in calculated for 2.191 af (100% of inflow in (862.0 - 827.3) rage Storage Description 59 cf Custom Stage Data (Irregular)L erim. Inc.Store Cum.Store (feet) (cubic-feet) (cubic-feet)) isted below (Recalc) e Wet.Area .) (sq-ft) 0 9,939			
lug-Flo enter-o <u>folume</u> #1 Elevatio (fee 214.8	ow detention of-Mass det. Invert 214.80' on Si et) 80 00	@ 12.14 hrs time= 35.1 mi time= 34.8 mi <u>Avail.Sto</u> 14,75 urf.Area P (sq-ft) 9,939 7 10,413 7	Surf.Area= 12,086 sf Storage= 6,222 c in calculated for 2.191 af (100% of inflow in (862.0 - 827.3) rage Storage Description 59 cf Custom Stage Data (Irregular)L erim. Inc.Store Cum.Store (feet) (cubic-feet) (cubic-feet)) isted below (Recalc) e Wet.Area :) (sq-ft) 0 9,939 5 10,570			
lug-Flc center-o <u>folume</u> #1 Elevatio (fee 214.8 215.0 216.0	ow detention of-Mass det. Invert 214.80' on Si et) 80 00	@ 12.14 hrs time= 35.1 mi time= 34.8 mi <u>Avail.Sto</u> 14,75 urf.Area P (sq-ft) 9,939 10,413 15,185 1,2 Invert	Surf.Area= 12,086 sf Storage= 6,222 c in calculated for 2.191 af (100% of inflow in (862.0 - 827.3) rage Storage Description 59 cf Custom Stage Data (Irregular)L erim. Inc.Store Cum.Store (feet) (cubic-feet) (cubic-feet) 771.0 2,035 2,033 210.0 12,724 14,755) isted below (Recalc) e Wet.Area :) (sq-ft) 0 9,939 5 10,570			
lug-Flo center-o <u>'olume</u> #1 Elevatio (fec 214.8 215.0	ow detention of-Mass det. 214.80' on Si et) 80 00 00	@ 12.14 hrs time= 35.1 mi time= 34.8 mi <u>Avail.Sto</u> 14,74 urf.Area P (sq-ft) 9,939 10,413 15,185 1,2	Surf.Area= 12,086 sf Storage= 6,222 c in calculated for 2.191 af (100% of inflow in (862.0 - 827.3) rage Storage Description 59 cf Custom Stage Data (Irregular)L erim. Inc.Store Cum.Store (feet) (cubic-feet) (cubic-feet) 771.0 2,035 2,033 210.0 12,724 14,755	isted below (Recalc) e Wet.Area () (sq-ft) 0 9,939 5 10,570 9 79,782 () () () () () () () () () () () () () (

The Discrarge from the second se

		Q.,	020 HydroCAD Softw		Page 63
		Summary to	or Pond 12P: ST	ONE RECHARGE TR	ENCH
Inflow A Inflow Outflow Discarde Primary	= = ed =	1.73 cfs @ 12 0.85 cfs @ 12 0.17 cfs @ 12	0% Impervious, In: .09 hrs, Volume= .40 hrs, Volume= .40 hrs, Volume= .40 hrs, Volume=	flow Depth = 4.20" for 0.143 af 0.143 af, Atten= 5 0.137 af 0.006 af	10-yr event i1%, Lag= 18.7 min
			Span= 0.00-72.00 h Surf.Area= 2,427 sf	nrs, dt= 0.05 hrs Storage= 1,942 cf	
			n calculated for 0.14 n(831.2-750.1)	43 af (100% of inflow)	
Volume			age Storage Desc		
#1	219.00	' 1,94		0.00'L x 2.00'H Prismatoi rall x 40.0% Voids	d
Device		Invert	Outlet Devices		
#1	Primary	221.00'	Head (feet) 0.20 (2.50 3.00	breadth Broad-Crested 0.40 0.60 0.80 1.00 1.2 69 2.72 2.75 2.85 2.98	0 1.40 1.60 1.80 2.00
#2	Discarded	219.00'		ation over Surface area oundwater Elevation = 210	0.00'
		v Max=0.17 cfs Controls 0.17 c		221.00' (Free Discharge)
Primary	OutFlow	Max=0.22 cfs @ d Rectangula) 12.40 hrs HW=22 Weir (Weir Control	21.00' (Free Discharge) Is 0.22 cfs @ 0.12 fps)	
		Summary fo	or Pond 17P: ST	ONE RECHARGE TR	ENCH
Inflow A Inflow Outflow Discarde Primary	= = ed =	1.73 cfs @ 12 0.85 cfs @ 12 0.17 cfs @ 12	0% Impervious, In .09 hrs, Volume= .40 hrs, Volume= .40 hrs, Volume= .40 hrs, Volume=	flow Depth = 4.20" for 0.143 af 0.143 af, Atten= 5 0.137 af 0.006 af	10-yr event i1%, Lag= 18.7 min
			Span= 0.00-72.00 h Surf.Area= 2,427 sf	nrs, dt= 0.05 hrs Storage= 1,942 cf	
			n calculated for 0.14 n(831.2 - 750.1)	43 af (100% of inflow)	
Volume			age Storage Desc		
#1	219.00	' 1,94		9.00'L x 2.00'H Prismatoi rall x 40.0% Voids	d

Device #1 #2	Routing Primary	Invert 221.00'	Outlet Devices	
	Primary	221.00'		
#2			809.0' long x 1.0' breadth Broad-Crested Rectangular Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3 3.30 3.31 3.32	1.80 2.00
	Discarded	219.00'	2.410 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 210.00'	
	ed OutFlow M filtration (Cor		: @ 12.40 hrs HW=221.00' (Free Discharge) fs)	
Primary 1=Bro	OutFlow Max ad-Crested R	=0.22 cfs @ ectangula	0 12.40 hrs HW=221.00' (Free Discharge) r Weir (Weir Controls 0.22 cfs @ 0.12 fps)	
	Su	immary f	or Pond 19P: STONE RECHARGE TRENCH	
Inflow Ard Inflow Outflow Discarde Primary	= 1.73 = 0.83 d = 0.1	3 cfs @ 12 5 cfs @ 12 7 cfs @ 12	00% Impervious, Inflow Depth = 4.20" for 10-yr event 0.09 hrs, Volume= 0.143 af 2.40 hrs, Volume= 0.143 af, Atten= 51%, Lag= 18 2.40 hrs, Volume= 0.137 af 2.40 hrs, Volume= 0.006 af	3.7 min
Peak Ĕle Plug-Flov	v = 221.00' @ w detention tim	12.40 hrs ie= 81.2 mi	Span= 0.00-72.00 hrs, dt= 0.05 hrs Surf.Area= 2,427 sf Storage= 1,942 cf n calculated for 0.143 af (100% of inflow) n (831.2 - 750.1)	
Volume	Invert		rage Storage Description	
#1	219.00'	1,94	2 cf 3.00'W x 809.00'L x 2.00'H Prismatoid 4,854 cf Overall x 40.0% Voids	
Device	Routing	Invert	Outlet Devices	
#1	Primary	221.00'	809.0' long x 1.0' breadth Broad-Crested Rectangular Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3	1.80 2.00
#2	Discarded	219.00'	2.30 3.31 3.32 2.410 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 210.00'	.20 0.01
Discarde 2=Exf	ed OutFlow M filtration (Cor	ax=0.17 cfs ntrols 0.17 c	@ 12.40 hrs HW=221.00' (Free Discharge) fs)	
Primary	OutFlow Max ad-Crested R	=0.22 cfs @ ectangula	0 12.40 hrs HW=221.00' (Free Discharge) • Weir (Weir Controls 0.22 cfs @ 0.12 fps)	

6842-Post Type III 24-hr 10-yr Rainfall=4.44" Prepared by {enter your company name here}	6842-Post Type III 24-hr 10-yr Rainfall=4.44" Prepared by {enter your company name here}
HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 65	HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 66
Summary for Pond 21P: CB-4	Device Routing Invert Outlet Devices
Inflow Area = 0.345 ac, 80.72% Impervious, Inflow Depth = 3.54" for 10-yr event Inflow = 1.34 cfs @ 12.09 hrs, Volume= 0.102 af Outflow = 1.34 cfs @ 12.09 hrs, Volume= 0.102 af Primary = 1.34 cfs @ 12.09 hrs, Volume= 0.102 af	#1 Primary 215.60' 12.0'' Round Culvert L= 27.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.60' / 215.40' S= 0.0074 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.26' @ 12.09 hrs	Primary OutFlow Max=1.19 cfs @ 12.09 hrs HW=216.28' (Free Discharge)
Flood Elev= 218.50'	Summary for Pond 24P: CB-2
Device Routing Invert Outlet Devices #1 Primary 215.50' 12.0'' Round Culvert L= 37.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.50' / 215.30' S= 0.0054 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf	Inflow Area = 0.392 ac, 95.72% Impervious, Inflow Depth = 4.09" for 10-yr event Inflow = 1.64 cfs @ 12.09 hrs, Volume= 0.133 af Outflow = 1.64 cfs @ 12.09 hrs, Volume= 0.133 af, Atten= 0%, Lag= 0.0 min Primary = 1.64 cfs @ 12.09 hrs, Volume= 0.133 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Primary OutFlow Max=1.31 cfs @ 12.09 hrs HW=216.24' (Free Discharge)	Peak Elev= 217.01' @ 12.09 hrs Flood Elev= 219.20'
Summary for Pond 22P: DMH-2	Device Routing Invert Outlet Devices
Inflow Area = 1.540 ac, 81.03% Impervious, Inflow Depth = 3.59" for 10-yr event Inflow = 6.00 cfs @ 12.09 hrs, Volume= 0.461 af Outflow = 6.00 cfs @ 12.09 hrs, Volume= 0.461 af, Atten= 0%, Lag= 0.0 min Primary = 6.00 cfs @ 12.09 hrs, Volume= 0.461 af	#1 Primary 216.20' 12.0'' Round Culvert L= 20.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.20' / 215.40' S= 0.0400 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.84' @ 12.09 hrs	Primary OutFlow Max=1.60 cfs @ 12.09 hrs HW=216.99' (Free Discharge)
Flood Elev= 218.90'	Summary for Pond 25P: CB-3
Device Routing Invert Outlet Devices #1 Primary 215.30' 18.0" Round Culvert L= 101.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.30' / 214.80' S= 0.0050 '/' Cc= 0.900 n= 0.013, Flow Area= 1.77 sf	Inflow Area = 0.565 ac, 67.38% Impervious, Inflow Depth = 3.14" for 10-yr event Inflow = 2.00 cfs @ 12.09 hrs, Volume= 0.148 af Outflow = 2.00 cfs @ 12.09 hrs, Volume= 0.148 af, Atten= 0%, Lag= 0.0 min Primary = 2.00 cfs @ 12.09 hrs, Volume= 0.148 af
Primary OutFlow Max=5.86 cfs @ 12.09 hrs HW=216.81' (Free Discharge) —1=Culvert (Inlet Controls 5.86 cfs @ 3.32 fps)	Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 217.44' @ 12.09 hrs Flood Elev= 219.50'
Summary for Pond 23P: CB-1	Device Routing Invert Outlet Devices
Inflow Area = 0.307 ac, 83.76% Impervious, Inflow Depth = 3.65" for 10-yr event Inflow = 1.22 cfs @ 12.09 hrs, Volume= 0.093 af Outflow = 1.22 cfs @ 12.09 hrs, Volume= 0.093 af, Atten= 0%, Lag= 0.0 min Primary = 1.22 cfs @ 12.09 hrs, Volume= 0.093 af	#1 Primary 216.50' 12.0'' Round Culvert L= 38.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.50' / 215.40' S= 0.0289 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.29' @ 12.09 hrs Flood Elev= 218.60'	Primary OutFlow Max=1.96 cfs @ 12.09 hrs HW=217.42' (Free Discharge) -1=Culvert (Inlet Controls 1.96 cfs @ 2.58 fps)

Z-Post Type III 24-hr 10-yr Rainfall=4.44" pared by {enter your company name here} 000000000000000000000000000000000000	6842-Post Type III 24-hr 10-yr Rainfall=4.4 Prepared by {enter your company name here} HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 6
Summary for Pond 26P: DMH-1	Device Routing Invert Outlet Devices
w Area = 1.264 ac, 80.14% Impervious, Inflow Depth = 3.56" for 10-yr event w = 4.86 cfs @ 12.09 hrs, Volume= 0.375 af low = 4.86 cfs @ 12.09 hrs, Volume= 0.375 af, Atten= 0%, Lag= 0.0 min	#1 Primary 215.10' 12.0" Round Culvert L = 160.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.10' / 214.30' S= 0.0050 '/' Cc= 0.900 Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
ary = 4.86 cfs @ 12.09 hrs, Volume= 0.375 af ting by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs < Elev= 216.58' @ 12.09 hrs	Primary OutFlow Max=2.12 cfs @ 12.09 hrs HW=216.10' (Free Discharge) ←1=Culvert (Inlet Controls 2.12 cfs @ 2.70 fps)
d Elev= 218.90'	Summary for Pond 29P: CB-21
ce Routing Invert Outlet Devices 11 Primary 215.30' 18.0" Round Culvert L= 56.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.30' / 214.80' S= 0.0089 '/' Cc= 0.900 n= 0.013, Flow Area= 1.77 sf	Inflow Area = 0.123 ac,100.00% Impervious, Inflow Depth = 4.20" for 10-yr event Inflow = 0.52 cfs @ 12.09 hrs, Volume= 0.043 af Outflow = 0.52 cfs @ 12.09 hrs, Volume= 0.043 af, Atten= 0%, Lag= 0.0 min Primary = 0.52 cfs @ 12.09 hrs, Volume= 0.043 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
hary OutFlow Max=4.74 cfs @ 12.09 hrs HW=216.55' (Free Discharge) =Culvert (Inlet Controls 4.74 cfs @ 3.01 fps)	Peak Elev= 216.61' @ 12.09 hrs Flood Elev= 219.20'
Summary for Pond 27P: DCB-22	Device Routing Invert Outlet Devices
w Area = 0.515 ac,100.00% Impervious, Inflow Depth = 4.20" for 10-yr event w = 2.18 cfs @ 12.09 hrs, Volume= 0.180 af low = 2.18 cfs @ 12.09 hrs, Volume= 0.180 af, Atten= 0%, Lag= 0.0 min ary = 2.18 cfs @ 12.09 hrs, Volume= 0.180 af	#1 Primary 216.20' 12.0" Round Culvert L= 26.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.20' / 215.70' S= 0.0192 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
ing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs	Primary OutFlow Max=0.50 cfs @ 12.09 hrs HW=216.60' (Free Discharge)
k Elev= 216.53' @ 12.09 hrs d Elev= 218.50'	Summary for Pond 30P: DMH-15
ce Routing Invert Outlet Devices 11 Primary 215.50' 12.0'' Round Culvert L= 50.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.50' / 215.20' S= 0.0060 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf	Inflow Area = 0.637 ac,100.00% Impervious, Inflow Depth = 4.20" for 10-yr event Inflow = 2.70 cfs @ 12.09 hrs, Volume= 0.223 af Outflow = 2.70 cfs @ 12.09 hrs, Volume= 0.223 af, Atten= 0%, Lag= 0.0 min Primary = 2.70 cfs @ 12.09 hrs, Volume= 0.223 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
hary OutFlow Max=2.12 cfs @ 12.09 hrs HW=216.51' (Free Discharge) =Culvert (Inlet Controls 2.12 cfs @ 2.71 fps)	Peak Elev= 215.17' @ 12.09 hrs Flood Elev= 219.80'
Summary for Pond 28P: DMH-16	Device Routing Invert Outlet Devices
w Area = 0.515 ac,100.00% Impervious, Inflow Depth = 4.20" for 10-yr event w = 2.18 cfs @ 12.09 hrs, Volume= 0.180 af low = 2.18 cfs @ 12.09 hrs, Volume= 0.180 af, Atten= 0%, Lag= 0.0 min core 2.18 cfs @ 12.09 hrs, Volume= 0.180 af, Atten= 0%, Lag= 0.0 min	#1 Primary 214.20' 15.0" Round Culvert L= 250.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 214.20' / 212.90' S= 0.0052 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf
ary = 2.18 cfs @ 12.09 hrs, Volume= 0.180 af ting by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs	Primary OutFlow Max=2.63 cfs @ 12.09 hrs HW=215.15' (Free Discharge)

42-Post Type III 24-hr 10-yr Rainfall=4.44" epared by {enter your company name here} droCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 69	6842-Post Type III 24-hr 10-yr Rainfall=4.44 Prepared by {enter your company name here} HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 7
Summary for Pond 31P: DMH-14	Device Routing Invert Outlet Devices #1 Primary 215.60' 12.0" Round Culvert
ow Area = 1.468 ac, 97.47% Impervious, Inflow Depth = 4.12" for 10-yr event ow = 6.16 cfs @ 12.09 hrs, Volume= 0.504 af tflow = 6.16 cfs @ 12.09 hrs, Volume= 0.504 af v 0.504 af, Atten= 0%, Lag= 0.0 min 0.504 af	L= 180.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.60' / 214.70' S= 0.0050 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
mary = 6.16 cfs @ 12.09 hrs, Volume= 0.504 af uting by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs ak Elev= 214.41' @ 12.09 hrs	Primary OutFlow Max=2.06 cfs @ 12.09 hrs HW=216.57' (Free Discharge)
od Elev= 218.60'	Summary for Pond 34P: CB-23
vice Routing Invert Outlet Devices #1 Primary 212.80' 18.0'' Round Culvert L= 61.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 212.80' / 212.50' S= 0.0049 '/' Cc= 0.900 n= 0.013, Flow Area= 1.77 sf	Inflow Area = 0.288 ac, 87.12% Impervious, Inflow Depth = 3.76" for 10-yr event Inflow = 1.16 cfs @ 12.09 hrs, Volume= 0.090 af Outflow = 1.16 cfs @ 12.09 hrs, Volume= 0.090 af, Atten= 0%, Lag= 0.0 min Primary = 1.16 cfs @ 12.09 hrs, Volume= 0.090 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
mary OutFlow Max=6.00 cfs @ 12.09 hrs HW=214.37' (Free Discharge) 1=Culvert (Barrel Controls 6.00 cfs @ 4.02 fps)	Peak Elev= 216.57' @ 12.09 hrs Flood Elev= 218.50'
Summary for Pond 32P: CB-20	Device Routing Invert Outlet Devices
ow Area = 0.318 ac,100.00% Impervious, Inflow Depth = 4.20" for 10-yr event ow = 1.35 cfs @ 12.09 hrs, Volume= 0.111 af tflow = 1.35 cfs @ 12.09 hrs, Volume= 0.111 af, Atten= 0%, Lag= 0.0 min mary = 1.35 cfs @ 12.09 hrs, Volume= 0.111 af	#1 Primary 215.90' 12.0" Round Culvert L= 28.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.90' / 215.70' S= 0.0071 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
uting by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs ak Elev= 216.21' @ 12.09 hrs	Primary OutFlow Max=1.13 cfs @ 12.09 hrs HW=216.56' (Free Discharge)
od Elev= 218.50'	Summary for Pond 35P: CB-24
vice Routing Invert Outlet Devices #1 Primary 215.50' 12.0" Round Culvert L= 12.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.50' / 215.30' met / Outlet Invert= 215.50' / 215.30' S= 0.0167 '/' cc 0.013, Flow Area= 0.79 sf	Inflow Area = 0.224 ac,100.00% Impervious, Inflow Depth = 4.20" for 10-yr event Inflow = 0.95 cfs @ 12.09 hrs, Volume= 0.079 af Outflow = 0.95 cfs @ 12.09 hrs, Volume= 0.079 af, Atten= 0%, Lag= 0.0 min Primary = 0.95 cfs @ 12.09 hrs, Volume= 0.079 af
mary OutFlow Max=1.31 cfs @ 12.09 hrs HW=216.20' (Free Discharge) 1=Culvert (Inlet Controls 1.31 cfs @ 2.24 fps)	Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.48' @ 12.09 hrs Flood Elev= 218.50'
Summary for Pond 33P: DMH-17	Device Routing Invert Outlet Devices
ow Area = 0.513 ac, 92.75% Impervious, Inflow Depth = 3.95" for 10-yr event ow = 2.11 cfs @ 12.09 hrs, Volume= 0.169 af tflow = 2.11 cfs @ 12.09 hrs, Volume= 0.169 af, Atten= 0%, Lag= 0.0 min mary = 2.11 cfs @ 12.09 hrs, Volume= 0.169 af	#1 Primary 215.90' 12.0" Round Culvert L= 20.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.90' / 215.70' S= 0.0100 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
uting by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs ak Elev= 216.59' @ 12.09 hrs od Elev= 218.80'	Primary OutFlow Max=0.92 cfs @ 12.09 hrs HW=216.47' (Free Discharge)

6842-Post Type III 24-hr 10-yr Rainfall=4.44" Prepared by {enter your company name here}	6842-Post Type III 24-hr 10-yr Rainfall=4.44" Prepared by {enter your company name here}
HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 71	HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 72
Summary for Pond 36P: DMH-7	Device Routing Invert Outlet Devices
Inflow Area = 0.323 ac,100.00% Impervious, Inflow Depth = 4.20" for 10-yr event Inflow = 1.37 cfs @ 12.09 hrs, Volume= 0.113 af Outflow = 1.37 cfs @ 12.09 hrs, Volume= 0.113 af, Atten= 0%, Lag= 0.0 min Primary = 1.37 cfs @ 12.09 hrs, Volume= 0.113 af	#1 Primary 232.20' 12.0" Round Culvert L= 15.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 232.20' / 231.70' S= 0.0333 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.72' @ 12.09 hrs	Primary OutFlow Max=0.18 cfs @ 12.09 hrs HW=232.43' (Free Discharge) -1=Culvert (Inlet Controls 0.18 cfs @ 1.29 fps)
Flood Elev= 219.80'	Summary for Pond 39P: CB-16
Device Routing Invert Outlet Devices #1 Primary 216.00' 12.0" Round Culvert L= 220.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.00' / 214.80' S= 0.0055 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf Primary OutFlow Max=1.33 cfs @ 12.09 hrs HW=216.70' (Free Discharge) 1=Culvert (Inlet Controls 1.33 cfs @ 2.25 fps) Summary for Pond 37P: DMH-10	Inflow Area = $0.046 \text{ ac}, 100.00\%$ Impervious, Inflow Depth = 4.20° for 10-yr event Inflow = $0.19 \text{ cfs} @ 12.09 \text{ hrs}$, Volume= 0.016 af Outflow = $0.19 \text{ cfs} @ 12.09 \text{ hrs}$, Volume= 0.016 af , Atten= 0%, Lag= 0.0 min Primary = $0.19 \text{ cfs} @ 12.09 \text{ hrs}$, Volume= 0.016 af Routing by Stor-Ind method, Time Span= $0.00-72.00 \text{ hrs}$, dt= 0.05 hrs Peak Elev= 232.44° @ 12.09 hrs Flood Elev= 236.20° Device Routing Invert Outlet Devices
Inflow Area = 0.446 ac,100.00% Impervious, Inflow Depth = 4.20" for 10-yr event Inflow = 1.89 cfs @ 12.09 hrs, Volume= 0.156 af Outflow = 1.89 cfs @ 12.09 hrs, Volume= 0.156 af, Atten= 0%, Lag= 0.0 min Primary = 1.89 cfs @ 12.09 hrs, Volume= 0.156 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs 10.05 hrs	#1 Primary 232.20' 12.0'' Round Culvert L= 15.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 232.20' / 231.70' S= 0.0333 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf Primary OutFlow Max=0.19 cfs @ 12.09 hrs HW=232.44' (Free Discharge) —1=Culvert (Inlet Controls 0.19 cfs @ 1.31 fps)
Peak Elev= 218.87' @ 12.09 hrs Flood Elev= 222.20'	Summary for Pond 52P: CB-17
Device Routing Invert Outlet Devices #1 Primary 218.10' 15.0" Round Culvert L= 122.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 218.10' / 214.50' S= 0.0295 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf Primary OutFlow Max=1.84 cfs @ 12.09 hrs HW=218.86' (Free Discharge) T=1=Culvert (Inlet Controls 1.84 cfs @ 2.35 fps)	Inflow Area = 0.081 ac,100.00% Impervious, Inflow Depth = 4.20" for 10-yr event Inflow = 0.34 cfs @ 12.09 hrs, Volume= 0.028 af Outflow = 0.34 cfs @ 12.09 hrs, Volume= 0.028 af, Atten= 0%, Lag= 0.0 min Primary = 0.34 cfs @ 12.09 hrs, Volume= 0.028 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 247.73' @ 12.09 hrs Flood Elev= 251.40' 12.09 hrs 12.09 hrs 12.09 hrs
Summary for Pond 38P: CB-15	Device Routing Invert Outlet Devices
Inflow Area = $0.043 \text{ ac}, 100.00\%$ Impervious, Inflow Depth = $4.20"$ for 10-yr event Inflow = $0.18 \text{ cfs} @ 12.09 \text{ hrs}$, Volume= 0.015 af Outflow = $0.18 \text{ cfs} @ 12.09 \text{ hrs}$, Volume= 0.015 af , Atten= 0%, Lag= 0.0 min Primary = $0.18 \text{ cfs} @ 12.09 \text{ hrs}$, Volume= 0.015 af Routing by Stor-Ind method, Time Span= $0.00-72.00 \text{ hrs}$, dt= 0.05 hrs Peak Elev= $232.43"$ @ 12.09 hrs Flood Elev= $236.20"$	#1 Primary 247.40' 12.0" Round Culvert L= 18.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 247.40' / 246.50' S= 0.0500 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf Primary OutFlow Max=0.33 cfs @ 12.09 hrs HW=247.72' (Free Discharge) 1=Culvert (Inlet Controls 0.33 cfs @ 1.52 fps)

6842-Post Type III 24-hr 10-yr Rainfall=4.44"	6842-Post Type III 24-hr 10-yr Rainfall=4.44"
Prepared by {enter your company name here} HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 73	Prepared by {enter your company name here} HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 74
Summary for Pond 53P: CB-18	Device Routing Invert Outlet Devices
Inflow Area = 0.080 ac,100.00% Impervious, Inflow Depth = 4.20" for 10-yr event Inflow = 0.34 cfs @ 12.09 hrs, Volume= 0.028 af, Outflow = 0.34 cfs @ 12.09 hrs, Volume= 0.028 af, Primary = 0.34 cfs @ 12.09 hrs, Volume= 0.028 af	#1 Primary 239.90' 12.0" Round Culvert L= 110.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 239.90' / 231.70' S= 0.0745 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 247.72' @ 12.09 hrs	Primary OutFlow Max=0.66 cfs @ 12.09 hrs HW=240.37' (Free Discharge)
Flood Elev= 251.40'	Summary for Pond 58P: CB-13
Device Routing Invert Outlet Devices #1 Primary 247.40' 12.0" Round Culvert L= 18.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 247.40' / 246.50' S= 0.0500 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf	Inflow Area = 0.060 ac,100.00% Impervious, Inflow Depth = 4.20" for 10-yr event Inflow = 0.26 cfs @ 12.09 hrs, Volume= 0.021 af Outflow = 0.26 cfs @ 12.09 hrs, Volume= 0.021 af, Atten= 0%, Lag= 0.0 min Primary = 0.26 cfs @ 12.09 hrs, Volume= 0.021 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 219.18' @ 12.09 hrs
←1=Culvert (Inlet Controls 0.33 cfs @ 1.52 fps)	Flood Elev= 221.90'
Summary for Pond 54P: DMH-13	Device Routing Invert Outlet Devices
Inflow Area = 0.161 ac,100.00% Impervious, Inflow Depth = 4.20" for 10-yr event Inflow = 0.68 cfs @ 12.09 hrs, Volume= 0.056 af Outflow = 0.68 cfs @ 12.09 hrs, Volume= 0.056 af, Atten= 0%, Lag= 0.0 min Primary = 0.68 cfs @ 12.09 hrs, Volume= 0.056 af	#1 Primary 218.90' 12.0'' Round Culvert L= 15.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 218.90' / 218.20' S= 0.0467 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 246.87' @ 12.09 hrs	Primary OutFlow Max=0.25 cfs @ 12.09 hrs HW=219.18' (Free Discharge)
Flood Elev= 250.20'	Summary for Pond 61P: DMH-11
Device Routing Invert Outlet Devices #1 Primary 246.40' 12.0" Round Culvert L= 85.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 246.40' / 240.00' S= 0.0753 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf Cc= 0.900 Cc= 0.900 Cc= 0.900 Cc= 0.900	Inflow Area = 0.249 ac,100.00% Impervious, Inflow Depth = 4.20" for 10-yr event Inflow = 1.06 cfs @ 12.09 hrs, Volume= 0.087 af Outflow = 1.06 cfs @ 12.09 hrs, Volume= 0.087 af, Atten= 0%, Lag= 0.0 min Primary = 1.06 cfs @ 12.09 hrs, Volume= 0.087 af
Primary OutFlow Max=0.66 cfs @ 12.09 hrs HW=246.87' (Free Discharge) —1=Culvert (Inlet Controls 0.66 cfs @ 1.84 fps)	Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 232.21' @ 12.09 hrs Flood Elev= 235.70'
Summary for Pond 56P: DMH-12	Device Routing Invert Outlet Devices #1 Primary 231.60' 12.0" Round Culvert
Inflow Area = 0.161 ac,100.00% Impervious, Inflow Depth = 4.20" for 10-yr event Inflow = 0.68 cfs @ 12.09 hrs, Volume= 0.056 af Outflow = 0.68 cfs @ 12.09 hrs, Volume= 0.056 af, Atten= 0%, Lag= 0.0 min Primary = 0.68 cfs @ 12.09 hrs, Volume= 0.056 af	L= 198.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 231.60' / 218.20' S= 0.0677 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 240.37' @ 12.09 hrs Flood Elev= 244.00'	Primary OutFlow Max=1.03 cfs @ 12.09 hrs HW=232.20' (Free Discharge) -1=Culvert (Inlet Controls 1.03 cfs @ 2.08 fps)

6842-Post Type III 24-hr 10-yr Rainfall=4.44" Prepared by {enter your company name here}	6842-Post Type III 24-hr 10-yr Rainfall=4.44" Prepared by {enter your company name here}
HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 75	HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 76
Summary for Pond 62P: CB-14	Device Routing Invert Outlet Devices
Inflow Area = 0.136 ac,100.00% Impervious, Inflow Depth = 4.20" for 10-yr event Inflow = 0.57 cfs @ 12.09 hrs, Volume= 0.048 af Outflow = 0.57 cfs @ 12.09 hrs, Volume= 0.048 af, Atten= 0%, Lag= 0.0 min Primary = 0.57 cfs @ 12.09 hrs, Volume= 0.048 af	#1 Primary 216.00' 12.0" Round Culvert L= 24.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.00' / 215.50' S= 0.0208 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 219.33' @ 12.09 hrs	Primary OutFlow Max=0.55 cfs @ 12.09 hrs HW=216.42' (Free Discharge) ▲1=Culvert (Inlet Controls 0.55 cfs @ 1.75 fps)
Flood Elev= 221.90'	Summary for Pond 67P: CB-7
Device Routing Invert Outlet Devices #1 Primary 218.90' 12.0" Round Culvert L= 15.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 218.90' / 218.20' S= 0.0467 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf	Inflow Area = 0.093 ac,100.00% Impervious, Inflow Depth = 4.20" for 10-yr event Inflow = 0.39 cfs @ 12.09 hrs, Volume= 0.033 af Outflow = 0.39 cfs @ 12.09 hrs, Volume= 0.033 af, Atten= 0%, Lag= 0.0 min Primary = 0.39 cfs @ 12.09 hrs, Volume= 0.033 af
Primary OutFlow Max=0.56 cfs @ 12.09 hrs HW=219.33' (Free Discharge) └──1=Culvert (Inlet Controls 0.56 cfs @ 1.75 fps)	Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.35' @ 12.09 hrs Flood Elev= 219.00'
Summary for Pond 63P: DMH-4	Device Routing Invert Outlet Devices
Inflow Area = 1.336 ac,100.00% Impervious, Inflow Depth = 4.20" for 10-yr event Inflow = 5.66 cfs @ 12.09 hrs, Volume= 0.468 af Outflow = 5.66 cfs @ 12.09 hrs, Volume= 0.468 af, Atten= 0%, Lag= 0.0 min	#1 Primary 216.00' 12.0" Round Culvert L= 24.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.00' / 215.50' S= 0.0208 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Primary = 5.66 cfs @ 12.09 hrs, Volume= 0.468 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 215.47' @ 12.09 hrs	Primary OutFlow Max=0.38 cfs @ 12.09 hrs HW=216.35' (Free Discharge) 1=Culvert (Inlet Controls 0.38 cfs @ 1.58 fps)
Flood Elev= 222.20'	Summary for Pond 68P: DMH-9
Device Routing Invert Outlet Devices #1 Primary 214.10' 24.0" Round Culvert L= 35.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 214.10' / 214.00' S= 0.0029 '/' Cc= 0.900 n= 0.013, Flow Area= 3.14 sf	Inflow Area = 0.909 ac, 78.68% Impervious, Inflow Depth = 3.52" for 10-yr event Inflow = 3.48 cfs @ 12.09 hrs, Volume = 0.267 af Outflow = 3.48 cfs @ 12.09 hrs, Volume = 0.267 af, Atten = 0%, Lag = 0.0 min Primary = 3.48 cfs @ 12.09 hrs, Volume = 0.267 af, Atten = 0%, Lag = 0.0 min
Primary OutFlow Max=5.50 cfs @ 12.09 hrs HW=215.44' (Free Discharge) └──1=Culvert (Barrel Controls 5.50 cfs @ 3.47 fps)	Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 217.27' @ 12.09 hrs Flood Elev= 219.40'
Summary for Pond 66P: CB-6	Device Routing Invert Outlet Devices
Inflow Area = 0.134 ac,100.00% Impervious, Inflow Depth = 4.20" for 10-yr event Inflow = 0.57 cfs @ 12.09 hrs, Volume= 0.047 af Outflow = 0.57 cfs @ 12.09 hrs, Volume= 0.047 af, Atten= 0%, Lag= 0.0 min Primary = 0.57 cfs @ 12.09 hrs, Volume= 0.047 af	#1 Primary 216.10' 15.0'' Round Culvert L= 79.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.10' / 215.40' S= 0.0089 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.43' @ 12.09 hrs Flood Elev= 219.00'	Primary OutFlow Max=3.40 cfs @ 12.09 hrs HW=217.25' (Free Discharge) -1=Culvert (Inlet Controls 3.40 cfs @ 2.88 fps)

B42-Post Type III 24-hr 10-yr Rainfall=4.44" epared by {enter your company name here} droCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 77	6842-Post Type III 24-hr 10-yr Rainfall=4.44 Prepared by {enter your company name here} HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 7
Summary for Pond 69P: CB-11	Device Routing Invert Outlet Devices
low Area = 0.107 ac,100.00% Impervious, Inflow Depth = 4.20" for 10-yr event low = 0.45 cfs @ 12.09 hrs, Volume= 0.037 af utflow = 0.45 cfs @ 12.09 hrs, Volume= 0.037 af, Atten= 0%, Lag= 0.0 min imary = 0.45 cfs @ 12.09 hrs, Volume= 0.037 af	#1 Primary 215.50' 12.0" Round Culvert L= 32.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.50' / 215.30' S= 0.0062 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
ak Elev= 216.71' @ 12.09 hrs	Primary OutFlow Max=0.72 cfs @ 12.09 hrs HW=216.01' (Free Discharge) ←1=Culvert (Barrel Controls 0.72 cfs @ 2.58 fps)
ood Elev= 219.30'	Summary for Pond 72P: CB-9
evice Routing Invert Outlet Devices #1 Primary 216.30' 12.0'' Round Culvert L= 14.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.30' / 216.20' S= 0.0071 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf	Inflow Area = 0.165 ac,100.00% Impervious, Inflow Depth = 4.20" for 10-yr event Inflow = 0.70 cfs @ 12.09 hrs, Volume= 0.058 af Outflow = 0.70 cfs @ 12.09 hrs, Volume= 0.058 af, Atten= 0%, Lag= 0.0 min Primary = 0.70 cfs @ 12.09 hrs, Volume= 0.058 af
imary OutFlow Max=0.44 cfs @ 12.09 hrs HW=216.70' (Free Discharge) -1=Culvert (Barrel Controls 0.44 cfs @ 2.21 fps)	Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.01' @ 12.09 hrs Flood Elev= 218.50'
Summary for Pond 70P: CB-12	Device Routing Invert Outlet Devices
Iow Area = 0.802 ac, 75.84% Impervious, Inflow Depth = 3.43" for 10-yr event Iow = 3.03 cfs @ 12.09 hrs, Volume= 0.230 af utflow = 3.03 cfs @ 12.09 hrs, Volume= 0.230 af, Atten= 0%, Lag= 0.0 min utflow = 3.03 cfs @ 12.09 hrs, Volume= 0.230 af, Atten= 0%, Lag= 0.0 min	#1 Primary 215.50' 12.0" Round Culvert L= 37.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.50' / 215.30' S= 0.0054 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
imary = 3.03 cfs @ 12.09 hrs, Volume= 0.230 af outing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs	Primary OutFlow Max=0.68 cfs @ 12.09 hrs HW=216.01' (Free Discharge) 1=Culvert (Barrel Controls 0.68 cfs @ 2.49 fps)
eak Elev= 217.44' @ 12.09 hrs bod Elev= 219.30'	Summary for Pond 73P: DMH-6
evice Routing Invert Outlet Devices #1 Primary 216.30' 15.0'' Round Culvert L= 14.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.30' / 216.20' S= 0.0071 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf imary OutFlow Max=2.96 cfs @ 12.09 hrs HW=217.42' (Free Discharge)	Inflow Area = 0.340 ac,100.00% Impervious, Inflow Depth = 4.20" for 10-yr event Inflow = 1.44 cfs @ 12.09 hrs, Volume= 0.119 af Outflow = 1.44 cfs @ 12.09 hrs, Volume= 0.119 af, Atten= 0%, Lag= 0.0 min Primary = 1.44 cfs @ 12.09 hrs, Volume= 0.119 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 215.94' @ 12.09 hrs
-1=Culvert (Barrel Controls 2.96 cfs @ 3.36 fps)	Flood Elev= 219.10'
Bow Area = 0.175 ac,100.00% Impervious, Inflow Depth = 4.20" for 10-yr event Bow = 0.74 cfs @ 12.09 hrs, Volume= 0.061 af utflow = 0.74 cfs @ 12.09 hrs, Volume= 0.061 af utflow = 0.74 cfs @ 12.09 hrs, Volume= 0.061 af utflow = 0.74 cfs @ 12.09 hrs, Volume= 0.061 af outing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs sak Elev= sak Elev= 216.02' @ 12.09 hrs brs sod Elev= 218.50' 50 50	Device Routing Invert Outlet Devices #1 Primary 215.20' 12.0'' Round Culvert L= 52.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.20' / 214.80' S= 0.0077 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf Primary OutFlow Max=1.40 cfs @ 12.09 hrs HW=215.93' (Free Discharge) 1=Culvert (Inlet Controls 1.40 cfs @ 2.29 fps)

6842-Post Type III 24-hr 10-yr Rainfall=4.44"	6842-Post Type III 24-hr 10-yr Rainfall=4.44"
Prepared by {enter your company name here} HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 79	Prepared by {enter your company name here} HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 80
Summary for Pond 78P: CB-19	Device Routing Invert Outlet Devices #1 Primary 214.70' 15.0'' Round Culvert
Inflow Area = 0.122 ac,100.00% Impervious, Inflow Depth = 4.20" for 10-yr event Inflow = 0.52 cfs @ 12.09 hrs, Volume= 0.043 af Outflow = 0.52 cfs @ 12.09 hrs, Volume= 0.043 af, Atten= 0%, Lag= 0.0 min Primary = 0.52 cfs @ 12.09 hrs, Volume= 0.043 af	L= 67.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 214.70' / 214.20' S= 0.0075 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.81' @ 12.09 hrs	Primary OutFlow Max=2.73 cfs @ 12.09 hrs HW=215.68' (Free Discharge)
Flood Elev= 219.00'	Summary for Pond 81P: CB-5
Device Routing Invert Outlet Devices #1 Primary 216.40' 12.0" Round Culvert L= 45.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.40' / 216.10' S= 0.0067 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf	Inflow Area = 0.287 ac, 88.82% Impervious, Inflow Depth = 3.87" for 10-yr event Inflow = 1.17 cfs @ 12.09 hrs, Volume= 0.092 af Outflow = 1.17 cfs @ 12.09 hrs, Volume= 0.092 af, Atten= 0%, Lag= 0.0 min Primary = 1.17 cfs @ 12.09 hrs, Volume= 0.092 af, Depth = Dutflow = 1.17 cfs @ 12.09 hrs, Volume= 0.092 af
Primary OutFlow Max=0.50 cfs @ 12.09 hrs HW=216.81' (Free Discharge)	Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.68' @ 12.09 hrs Flood Elev= 219.00'
Summary for Pond 79P: CB-10	Device Routing Invert Outlet Devices
Inflow Area = 0.200 ac,100.00% Impervious, Inflow Depth = 4.20" for 10-yr event Inflow = 0.85 cfs @ 12.09 hrs, Volume= 0.070 af Outflow = 0.85 cfs @ 12.09 hrs, Volume= 0.070 af, Atten= 0%, Lag= 0.0 min Primary = 0.85 cfs @ 12.09 hrs, Volume= 0.070 af	#1 Primary 216.00' 12.0'' Round Culvert L= 31.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.00' / 215.80' S= 0.0065 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.94' @ 12.09 hrs	Primary OutFlow Max=1.14 cfs @ 12.09 hrs HW=216.67' (Free Discharge)
Flood Elev= 219.00'	Summary for Pond 82P: DMH-3
Device Routing Invert Outlet Devices #1 Primary 216.40' 12.0" Round Culvert L= 17.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.40' / 216.10' S= 0.0176 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf	Inflow Area = 0.287 ac, 88.82% Impervious, Inflow Depth = 3.87" for 10-yr event Inflow = 1.17 cfs @ 12.09 hrs, Volume= 0.092 af Outflow = 1.17 cfs @ 12.09 hrs, Volume= 0.092 af, Atten= 0%, Lag= 0.0 min Primary = 1.17 cfs @ 12.09 hrs, Volume= 0.092 af
Primary OutFlow Max=0.83 cfs @ 12.09 hrs HW=216.93' (Free Discharge)	Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.37' @ 12.09 hrs Flood Elev= 218.90'
Summary for Pond 80P: DMH-5	Device Routing Invert Outlet Devices
Inflow Area = 0.663 ac,100.00% Impervious, Inflow Depth = 4.20" for 10-yr event Inflow = 2.81 cfs @ 12.09 hrs, Volume= 0.232 af Outflow = 2.81 cfs @ 12.09 hrs, Volume= 0.232 af, Atten= 0%, Lag= 0.0 min Primary = 2.81 cfs @ 12.09 hrs, Volume= 0.232 af	#1 Primary 215.70' 12.0'' Round Culvert L= 70.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.70' / 215.30' S= 0.0057 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 215.69' @ 12.09 hrs Flood Elev= 220.00'	Primary OutFlow Max=1.14 cfs @ 12.09 hrs HW=216.36' (Free Discharge) -1=Culvert (Barrel Controls 1.14 cfs @ 2.97 fps)

842-Post Type III 24-hr 10-yr Rainfall=4.44" repared by {enter your company name here} ydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 81	6842-Post Prepared by {enter your company na <u>HydroCAD® 10.10-3a_s/n 03590_© 2020</u> ⊦	
flow Area = 30.660 ac, 24.72% Impervious, Inflow Depth = 1.97" for 10-yr event	Runoff by SCS	0.00-72.00 hrs, dt=0.05 hrs, 1441 points 5 TR-20 method, UH=SCS, Weighted-CN 1+Trans method , Pond routing by Stor-Ind method
flow = 27.87 cfs @ 12.37 hrs, Volume= 5.043 af rimary = 27.87 cfs @ 12.37 hrs, Volume= 5.043 af, Atten= 0%, Lag= 0.0 min	Subcatchment 9S: APT. BLDG. A	Runoff Area=17,818 sf 100.00% Impervious Runoff Depth=5.31" Tc=6.0 min CN=98 Runoff=2.17 cfs 0.181 af
rimary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs	Subcatchment 16S: APT. BLDG. B	Runoff Area=17,818 sf 100.00% Impervious Runoff Depth=5.31" Tc=6.0 min CN=98 Runoff=2.17 cfs 0.181 af
	Subcatchment 18S: APT. BLDG. C	Runoff Area=17,818 sf 100.00% Impervious Runoff Depth=5.31" Tc=6.0 min CN=98 Runoff=2.17 cfs 0.181 af
	Subcatchment 21S: A.1	Runoff Area=20,195 sf 5.87% Impervious Runoff Depth=3.18" Tc=10.0 min CN=78 Runoff=1.49 cfs 0.123 af
	Subcatchment 22S: A.2	Runoff Area=13,850 sf 100.00% Impervious Runoff Depth=5.31" Tc=6.0 min CN=98 Runoff=1.69 cfs 0.141 af
	Subcatchment 23S: A.3	Runoff Area=9,767 sf 100.00% Impervious Runoff Depth=5.31" Tc=6.0 min CN=98 Runoff=1.19 cfs 0.099 af
	Subcatchment 24S: A.4	Runoff Area=5,341 sf 100.00% Impervious Runoff Depth=5.31" Tc=6.0 min CN=98 Runoff=0.65 cfs 0.054 af
	Subcatchment 25S: A.5	Runoff Area=22,426 sf 100.00% Impervious Runoff Depth=5.31" Tc=6.0 min CN=98 Runoff=2.73 cfs 0.228 af
	Subcatchment 26S: B.6	Runoff Area=40,090 sf 22.31% Impervious Runoff Depth=2.72" Tc=6.0 min UI Adjusted CN=73 Runoff=2.87 cfs 0.209 af
	Subcatchment 27S: A.6	Runoff Area=12,567 sf 87.12% Impervious Runoff Depth=4.85" Tc=6.0 min CN=94 Runoff=1.48 cfs 0.117 af
	Subcatchment 28S: B.1	Runoff Area=30,829 sf 0.88% Impervious Runoff Depth=3.09" Tc=6.0 min CN=77 Runoff=2.51 cfs 0.182 af
	Subcatchment 29S: B.2	Runoff Area=13,381 sf 83.76% Impervious Runoff Depth=4.74" Tc=6.0 min CN=93 Runoff=1.56 cfs 0.121 af
	Subcatchment 30S: B.3	Runoff Area=17,060 sf 95.72% Impervious Runoff Depth=5.20" Tc=6.0 min CN=97 Runoff=2.07 cfs 0.170 af
	Subcatchment 31S: B.4	Runoff Area=17,060 sf 95.72% Impervious Runoff Depth=5.20" Tc=6.0 min CN=97 Runoff=2.07 cfs 0.170 af
	Subcatchment 32S: B.5	Runoff Area=24,627 sf 67.38% Impervious Runoff Depth=4.19" Tc=6.0 min CN=88 Runoff=2.64 cfs 0.198 af
	Subcatchment 33S: B.7	Runoff Area=290,511 sf 2.55% Impervious Runoff Depth=2.54" Tc=30.0 min CN=71 Runoff=11.11 cfs 1.412 af

842-Post	Type III 24-hr 25-yr Rainfall=5.55"	6842-Post Type III 24-hr 25-yr Rainfall=5.55"
Prepared by {enter your company name lydroCAD® 10.10-3a s/n 03590 © 2020 Hyd	e here} IroCAD Software Solutions LLC Page 83	Prepared by {enter your company name here} HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 84
	Runoff Area=12,484 sf 88.82% Impervious Runoff Depth=4.96"	
ubcatchment 34S: B.8	Tc=6.0 min CN=95 Runoff=1.49 cfs 0.119 af	Subcatchment 52S: B.9 Runoff Area=15,018 sf 80.72% Impervious Runoff Depth=4.63" Tc=6.0 min CN=92 Runoff=1.72 cfs 0.133 af
ubcatchment 35S: C.1	Runoff Area=236,308 sf 9.34% Impervious Runoff Depth=3.09" Tc=20.0 min UI Adjusted CN=77 Runoff=13.19 cfs 1.397 af	Pond 4P: Constructed Stormwater Wetland Peak Elev=214.70' Storage=17,488 cf Inflow=9.06 cfs 0.787 af Outflow=1.78 cfs 0.785 af
ubcatchment 36S: C.2	Runoff Area=22,516 sf 83.62% Impervious Runoff Depth=4.74" Tc=6.0 min CN=93 Runoff=2.62 cfs 0.204 af	Pond 5P: Wet Basin Peak Elev=215.42' Storage=16,366 cf Inflow=18.51 cfs 2.013 af
ubcatchment 37S: C.3	Runoff Area=12,429 sf 61.75% Impervious Runoff Depth=4.09" Tc=6.0 min CN=87 Runoff=1.31 cfs 0.097 af	Outflow=11.16 cfs 2.013 af Pond 7P: Constructed Stormwater Wetland Peak Elev=215.44' Storage=7,069 cf Inflow=25.65 cfs 3.086 af
		Outflow=23.73 cfs 3.085 af
ubcatchment 38S: C.4	Runoff Area=4,655 sf 100.00% Impervious Runoff Depth=5.31" Tc=6.0 min CN=98 Runoff=0.57 cfs 0.047 af	Pond 12P: STONE RECHARGE TRENCH Peak Elev=221.01' Storage=1,942 cf Inflow=2.17 cfs 0.181 af Discarded=0.17 cfs 0.156 af Primary=2.41 cfs 0.025 af Outflow=2.58 cfs 0.181 af
ubcatchment 39S: C.5	Runoff Area=5,857 sf 100.00% Impervious Runoff Depth=5.31"	
	Tc=6.0 min CN=98 Runoff=0.71 cfs 0.060 af	Pond 17P: STONE RECHARGE TRENCH Discarded=0.17 cfs 0.156 af Primary=2.41 cfs 0.025 af Outflow=2.58 cfs 0.181 af
ubcatchment 40S: C.6	Runoff Area=4,047 sf 100.00% Impervious Runoff Depth=5.31" Tc=6.0 min CN=98 Runoff=0.49 cfs 0.041 af	Pond 19P: STONE RECHARGE TRENCH Peak Elev=221.01' Storage=1,942 cf Inflow=2.17 cfs 0.181 af
ubcatchment 41S: C.7	Runoff Area=7,188 sf 100.00% Impervious Runoff Depth=5.31"	Discarded=0.17 cfs 0.156 af Primary=2.41 cfs 0.025 af Outflow=2.58 cfs 0.181 af
ubcatchment 413. C.7	Tc=6.0 min CN=98 Runoff=0.88 cfs 0.073 af	Pond 21P: CB-4 12.0" Round Culvert n=0.013 L=37.0' S=0.0054 '/' Outflow=1.72 cfs 0.133 af
ubcatchment 42S: C.8	Runoff Area=7,639 sf 100.00% Impervious Runoff Depth=5.31" Tc=6.0 min CN=98 Runoff=0.93 cfs 0.078 af	Pond 22P: DMH-2 18.0" Round Culvert n=0.013 L=101.0' S=0.0050 '/' Outflow=7.70 cfs 0.600 af 18.0" Round Culvert n=0.013 L=101.0' S=0.0050 '/' Outflow=7.70 cfs 0.600 af
ubcatchment 43S: C.9	Runoff Area=8,732 sf 100.00% Impervious Runoff Depth=5.31" Tc=6.0 min CN=98 Runoff=1.06 cfs 0.089 af	Pond 23P: CB-1 Peak Elev=216.41' Inflow=1.56 cfs 0.121 af
ubcatchment 44S: C.10	Runoff Area=5,326 sf 100.00% Impervious Runoff Depth=5.31"	12.0" Round Culvert n=0.013 L=27.0' S=0.0074 // Outflow=1.56 cfs 0.121 af
ubcatchment 445. C. 10	Tc= $6.0 \text{ min CN}=98 \text{ Runoff}=0.65 \text{ cfs } 0.054 \text{ af}$	Pond 24P: CB-2 12.0" Round Culvert n=0.013 L=20.0' S=0.0400 '/ Outflow=2.07 cfs 0.170 af
ubcatchment 45S: C.11	Runoff Area=2,631 sf 100.00% Impervious Runoff Depth=5.31"	
ubcatchment 46S: C.12	Tc=6.0 min CN=98 Runoff=0.32 cfs 0.027 af Runoff Area=5,910 sf 100.00% Impervious Runoff Depth=5.31"	Pond 25P: CB-3 Peak Elev=217.78' Inflow=2.64 cfs 0.198 af 12.0" Round Culvert n=0.013 L=38.0' S=0.0289 '/' Outflow=2.64 cfs 0.198 af
ubcatchment 465. C. 12	Tc= 6.0 min CN= 98 Runoff= 0.72 cfs 0.060 af	Pond 26P: DMH-1 Peak Elev=216.92' Inflow=6.26 cfs 0.488 af 18.0" Round Culvert n=0.013 L=56.0' S=0.0089 '/' Outflow=6.26 cfs 0.488 af
ubcatchment 47S: C.13	Runoff Area=1,987 sf 100.00% Impervious Runoff Depth=5.31" Tc=6.0 min CN=98 Runoff=0.24 cfs 0.020 af	Pond 27P: DCB-22 12.0" Round Culvert n=0.013 L=50.0' S=0.0060 '/ Outflow=2.73 cfs 0.228 af
ubcatchment 48S: C.14	Runoff Area=1,885 sf 100.00% Impervious Runoff Depth=5.31" Tc=6.0 min CN=98 Runoff=0.23 cfs 0.019 af	Pond 28P: DMH-16 Peak Elev=216.58' Inflow=2.73 cfs 0.228 af
ubactabrant 408: C 45	Runoff Area=3,487 sf 100.00% Impervious Runoff Depth=5.31"	12.0" Round Culvert n=0.013 L=160.0' S=0.0050 '/' Outflow=2.73 cfs 0.228 af
ubcatchment 49S: C.15	Runoii Alea-3,467 si 100.00% impervious Runoii Deput-3.31 Tc=6.0 min CN=98 Runoff=0.42 cfs 0.035 af	Pond 29P: CB-21 Peak Elev=216.66' Inflow=0.65 cfs 0.054 af 12.0" Round Culvert n=0.013 L=26.0' S=0.0192 '/' Outflow=0.65 cfs 0.054 af
ubcatchment 50S: C.16	Runoff Area=3,508 sf 100.00% Impervious Runoff Depth=5.31" Tc=6.0 min CN=98 Runoff=0.43 cfs 0.036 af	Pond 30P: DMH-15 Peak Elev=215.34' Inflow=3.38 cfs 0.282 af
ubcatchment 51S: D.1	Runoff Area=402,771 sf 0.38% Impervious Runoff Depth=1.71" Tc=20.0 min CN=61 Runoff=11.60 cfs 1.318 af	15.0" Round Culvert n=0.013 L=250.0' S=0.0052 '/' Outflow=3.38 cfs 0.282 af

Type III 24-hr 25-yr Rainfall=5. pmpany name here} 00 © 2020 HydroCAD Software Solutions LLC Page	6842-Post Prepared by {enter your	Type III 24-hr 25-yr Rainfall=5.55" ompany name here} 90 © 2020 HydroCAD Software Solutions LLC Page 85	5842-Post Prepared by {enter your
Page	19010CAD@ 10.10-5a 3/100	So S 2020 Hydrochd Solitware Solutions ELC Fage 05	19010CAD@ 10.10-5a 3/110
Peak Elev=216.40' Inflow=0.49 cfs 0.04' 12.0" Round Culvert n=0.013 L=24.0' S=0.0208 '/' Outflow=0.49 cfs 0.04'	Pond 67P: CB-7	Peak Elev=214.90' Inflow=7.74 cfs 0.639 af 18.0" Round Culvert n=0.013 L=61.0' S=0.0049 '/' Outflow=7.74 cfs 0.639 af	Pond 31P: DMH-14
Peak Elev=217.65' Inflow=4.49 cfs 0.34' 15.0" Round Culvert n=0.013 L=79.0' S=0.0089 '/' Outflow=4.49 cfs 0.34'	Pond 68P: DMH-9	Peak Elev=216.32' Inflow=1.69 cfs 0.141 af 12.0" Round Culvert n=0.013 L=12.0' S=0.0167 '/' Outflow=1.69 cfs 0.141 af	Pond 32P: CB-20
Peak Elev=216.76' Inflow=0.57 cfs 0.04 12.0" Round Culvert n=0.013 L=14.0' S=0.0071 '/ Outflow=0.57 cfs 0.04	Pond 69P: CB-11	Peak Elev=217.04' Inflow=2.67 cfs 0.216 af 12.0" Round Culvert n=0.013 L=180.0' S=0.0050 '/' Outflow=2.67 cfs 0.216 af	Pond 33P: DMH-17
Peak Elev=217.67' Inflow=3.92 cfs 0.30' 15.0" Round Culvert n=0.013 L=14.0' S=0.0071 '/ Outflow=3.92 cfs 0.30'	Pond 70P: CB-12	Peak Elev=216.68' Inflow=1.48 cfs 0.117 af 12.0" Round Culvert n=0.013 L=28.0' S=0.0071 '/' Outflow=1.48 cfs 0.117 af	ond 34P: CB-23
Peak Elev=216.10' Inflow=0.93 cfs 0.078	Pond 71P: CB-8	Peak Elev=216.56' Inflow=1.19 cfs 0.099 af 12.0" Round Culvert n=0.013 L=20.0' S=0.0100 '/' Outflow=1.19 cfs 0.099 af	ond 35P: CB-24
12.0" Round Culvert n=0.013 L=32.0' S=0.0062 '/' Outflow=0.93 cfs 0.076 Peak Elev=216.09' Inflow=0.88 cfs 0.07?	Pond 72P: CB-9	Peak Elev=216.83' Inflow=1.71 cfs 0.143 af 12.0" Round Culvert n=0.013 L=220.0' S=0.0055 '/ Outflow=1.71 cfs 0.143 af	ond 36P: DMH-7
12.0" Round Culvert n=0.013 L=37.0' S=0.0054 '/' Outflow=0.88 cfs 0.073 Peak Elev=216.07' Inflow=1.81 cfs 0.15'	Pond 73P: DMH-6	Peak Elev=218.99' Inflow=2.36 cfs 0.197 af 15.0" Round Culvert n=0.013 L=122.0' S=0.0295 '/ Outflow=2.36 cfs 0.197 af	ond 37P: DMH-10
12.0" Round Culvert n=0.013 L=52.0' S=0.0077 '/' Outflow=1.81 cfs 0.15'		Peak Elev=232.46' Inflow=0.23 cfs 0.019 af	ond 38P: CB-15
Peak Elev=216.87' Inflow=0.65 cfs 0.05- 12.0" Round Culvert n=0.013 L=45.0' S=0.0067 '/' Outflow=0.65 cfs 0.054	Pond 78P: CB-19	12.0" Round Culvert n=0.013 L=15.0' S=0.0333 '/ Outflow=0.23 cfs 0.019 af Peak Elev=232.47' Inflow=0.24 cfs 0.020 af	ond 39P: CB-16
Peak Elev=217.01' Inflow=1.06 cfs 0.089 12.0" Round Culvert n=0.013 L=17.0' S=0.0176 '/' Outflow=1.06 cfs 0.089	Pond 79P: CB-10	12.0" Round Culvert n=0.013 L=15.0' S=0.0333 '/' Outflow=0.24 cfs 0.020 af Peak Elev=247.77' Inflow=0.43 cfs 0.036 af	ond 52P: CB-17
Peak Elev=215.88' Inflow=3.52 cfs 0.29 15.0" Round Culvert n=0.013 L=67.0' S=0.0075 '/' Outflow=3.52 cfs 0.294	Pond 80P: DMH-5	12.0" Round Culvert n=0.013 L=18.0' S=0.0500 '/' Outflow=0.43 cfs 0.036 af	
Peak Elev=216.79' Inflow=1.49 cfs 0.119 12.0" Round Culvert n=0.013 L=31.0' S=0.0065 '/ Outflow=1.49 cfs 0.119	Pond 81P: CB-5	Peak Elev=247.77' Inflow=0.42 cfs 0.035 af 12.0" Round Culvert n=0.013 L=18.0' S=0.0500 '/' Outflow=0.42 cfs 0.035 af	ond 53P: CB-18
Peak Elev=216.47' Inflow=1.49 cfs 0.119 12.0" Round Culvert n=0.013 L=70.0' S=0.0057 '/' Outflow=1.49 cfs 0.119	Pond 82P: DMH-3	Peak Elev=246.94' Inflow=0.85 cfs 0.071 af 12.0" Round Culvert n=0.013 L=85.0' S=0.0753 '/' Outflow=0.85 cfs 0.071 af	ond 54P: DMH-13
Inflow=42.05 cfs 7.20 Primary=42.05 cfs 7.20	Link 20L: DP-A	Peak Elev=240.44' Inflow=0.85 cfs 0.071 af 12.0" Round Culvert n=0.013 L=110.0' S=0.0745 '/' Outflow=0.85 cfs 0.071 af	ond 56P: DMH-12
Area = 30.660 ac Runoff Volume = 7.672 af Average Runoff Depth = 3 75.28% Pervious = 23.079 ac 24.72% Impervious = 7.58	Total Runo	Peak Elev=219.22' Inflow=0.32 cfs 0.027 af 12.0" Round Culvert n=0.013 L=15.0' S=0.0467 '/' Outflow=0.32 cfs 0.027 af	ond 58P: CB-13
75.20% Fervious - 25.075 ac 24.72% impervious - 7.50		Peak Elev=232.30' Inflow=1.32 cfs 0.110 af 12.0" Round Culvert n=0.013 L=198.0' S=0.0677 '/' Outflow=1.32 cfs 0.110 af	ond 61P: DMH-11
		Peak Elev=219.39' Inflow=0.72 cfs 0.060 af 12.0" Round Culvert n=0.013 L=15.0' S=0.0467 '/' Outflow=0.72 cfs 0.060 af	ond 62P: CB-14
		Peak Elev=215.66' Inflow=7.09 cfs 0.591 af 24.0" Round Culvert n=0.013 L=35.0' S=0.0029 '/' Outflow=7.09 cfs 0.591 af	ond 63P: DMH-4
		Peak Elev=216.49' Inflow=0.71 cfs 0.060 af 12.0" Round Culvert n=0.013 L=24.0' S=0.0208 '/' Outflow=0.71 cfs 0.060 af	ond 66P: CB-6

6842-Post Type III 24-hr 25-yr Rainfall=5.55" Prepared by {enter your company name here}	6842-Post Type III 24-hr 25-yr Rainfall=5.55 Prepared by {enter your company name here}
HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 87	HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 88
Summary for Subcatchment 9S: APT. BLDG. A	Summary for Subcatchment 21S: A.1
unoff = 2.17 cfs @ 12.09 hrs, Volume= 0.181 af, Depth= 5.31"	Runoff = 1.49 cfs @ 12.14 hrs, Volume= 0.123 af, Depth= 3.18"
unoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs ype III 24-hr 25-yr Rainfall=5.55"	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-yr Rainfall=5.55"
Area (sf) CN Description	Area (sf) CN Description
17,818 98 Roofs, HSG A	* 18.718 77 >75% Grass cover, Good, HSG A
17,818 100.00% Impervious Area	* 291 43 Woods, Good, HSG A
To Length Slope Velocity Capacity Description	95 98 Unconnected pavement, HSG A 1,091 98 Roofs, HSG A
(min) (feet) (ft/ft) (ft/sec) (cfs)	20,195 78 Weighted Average 19.009 94.13% Pervious Area
6.0 Direct Entry,	1.186 5.87% Inpervious Area
Summary for Subcatchment 16S: APT. BLDG. B	95 8.01% Unconnected
Runoff = 2.17 cfs @ 12.09 hrs, Volume= 0.181 af, Depth= 5.31"	Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs	10.0 Direct Entry,
Type III 24-hr 25-yr Rainfall=5.55"	Summary for Subcatchment 22S: A.2
Area (sf) CN Description 17.818 98 Roofs, HSG A	Runoff = 1.69 cfs @ 12.09 hrs, Volume= 0.141 af, Depth= 5.31"
17,818 100.00% Impervious Area	
	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Tc Length Slope Velocity Capacity Description	Type III 24-hr 25-yr Rainfall=5.55"
(min) (feet) (ft/ft) (ft/sec) (cfs)	Area (sf) CN Description
6.0 Direct Entry,	12,935 98 Paved parking, HSG A
Summer for Substatement (85: ADT, BLDC, C	915 98 Roofs, HSG A
Summary for Subcatchment 18S: APT. BLDG. C	13,850 98 Weighted Average
Runoff = 2.17 cfs @ 12.09 hrs, Volume= 0.181 af, Depth= 5.31"	13,850 100.00% Impervious Area
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs	Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
Type III 24-hr 25-yr Rainfall=5.55"	6.0 Direct Entry,
Area (sf) CN Description	
17,818 98 Roofs, HSG A	Summary for Subcatchment 23S: A.3
17,818 100.00% Impervious Area	Duraff = 140 fr @ 40.00 hrs. Valuman 0.000 af Datt 5.04
	Runoff = 1.19 cfs @ 12.09 hrs, Volume= 0.099 af, Depth= 5.31"
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
6.0 Direct Entry,	Type III 24-hr 25-yr Rainfall=5.55"
olo bilot Litity,	Area (sf) CN Description
	Area (sf) CN Description 9.767 98 Paved parking, HSG A

Tc Lengt	n Slope Velocity	Capacity	Description	Page 89
(min) (feet 6.0) (ft/ft) (ft/sec)	(cfs)	Direct Entry,	
	Sum	mary for S	Subcatchment 24S: A.4	
Runoff =	0.65 cfs @ 12.0	9 hrs, Volu	me= 0.054 af, Depth= 5.3	1"
	「R-20 method, UH=S 5-yr Rainfall=5.55"	SCS, Weigh	ted-CN, Time Span= 0.00-72.00 hrs	, dt= 0.05 hrs
Area (sf)	CN Description			
227 5,114	98 Paved park 98 Roofs, HSC			
5,341 5,341	98 Weighted A 100.00% In	verage pervious A	rea	
Tc Lengti (min) (feet		Capacity (cfs)	Description	
6.0			Direct Entry,	
	Sumi	mary for S	Subcatchment 25S: A.5	
Runoff =	2.73 cfs @ 12.0	9 hrs, Volu	me= 0.228 af, Depth= 5.3	1"
	FR-20 method, UH=S 5-yr Rainfall=5.55"	SCS, Weigh	ted-CN, Time Span= 0.00-72.00 hrs	, dt= 0.05 hrs
Гуре III 2́4-hr 2 Area (sf)	CN Description			
Гуре III 2́4-hr 2 <u>Area (sf)</u> 22,426	98 Paved park	ing, HSG A		
Гуре III 2́4-hr 2 <u>Area (sf)</u> 22,426 22,426	98 Paved park 100.00% In	ing, HSG A npervious A	rea	
Гуре III 24-hr 2 <u>Area (sf)</u> 22,426 22,426 Тс Lengtl (min) (feet	98 Paved park 100.00% In Slope Velocity	ing, HSG A	rea Description	
Гуре III 24-hr 2 <u>Area (sf)</u> 22,426 22,426 Тс Lengtl	98 Paved park 100.00% In Slope Velocity	ing, HSG A pervious A Capacity	rea	
Гуре III 24-hr 2 <u>Area (sf)</u> 22,426 22,426 Тс Lengtl (min) (feet	98 Paved park 100.00% In Slope Velocity (ft/ft) (ft/sec)	ing, HSG A npervious A Capacity (cfs)	rea Description	
Гуре III 24-hr 2 <u>Area (sf)</u> 22,426 22,426 Тс Lengtl (min) (feet	98 Paved park 100.00% In Slope Velocity (ft/ft) (ft/sec)	ing, HSG A ppervious A Capacity (cfs) mary for \$	rea Description Direct Entry, Subcatchment 26S: B.6	2"

					name her 0 HydroCAI		are Sol	utions LLC		Page 90
						JOILWA				Fage 90
	rea (sf)	CN	Adj		cription					
	31,146 3,467	68 98			% Grass co onnected p					
	5,407 5,477	98 98			fs, HSG A	aveniei	n, 110	GA		
	40,090	75	73		phted Avera	age, UI	Adjus	ted		
	31,146				9% Perviou					
	8,944 3,467				1% Imperv 6% Unconi		ea			
Tc	5	Slop		ocity	Capacity	Desc	ription			
(min) 6.0	(feet)	(ft/f	t) (ft	sec)	(cfs)	Direc	4 F 10 4 1			
0.0						Direc	t Entr	y,		
			5	Sumr	mary for	Subca	tchn	nent 27S	: A.6	
Runoff	=	1.48	cfs @	12.0	9 hrs, Voli	ume=		0.117 af,	Depth= 4.85	."
	y SCS TF 24-hr 25-				SCS, Weigh	nted-CN	l, Time	e Span= 0.	00-72.00 hrs,	dt= 0.05 hrs
A	rea (sf)	CN	Descr	iption						
	8,883	98			ing, HSG A					
	1,619 948	68 98			s cover, G ed paveme					
	1,117	98	Roofs			п, пос				
	12,567	94			verage					
	1,619				rvious Area					
	10,948 948				pervious Ar	ea				
Tc (min)	Length (feet)	Slop (ft/f		ocity /sec)	Capacity (cfs)	Desc	ription			
6.0	(1001)	(101	(10	0007	(00)	Direc	t Entr	у,		
			5	Sumr	mary for	Subca	atchn	nent 28S:	: B.1	
Runoff	=	2.51	cfs @	12.0	9 hrs, Voli	ume=		0.182 af,	Depth= 3.09	,"
	y SCS TF 24-hr 25-				SCS, Weigh	nted-CN	l, Time	e Span= 0.	00-72.00 hrs,	dt= 0.05 hrs
A	rea (sf)	CN	Descr							
	30,559 270	77 98			s cover, Ge ed paveme					
	30,829	77	Weigh	ted A	verage					
	30,559				rvious Area					
	270 270				ervious Are					
	210		100.0			-				

	0-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 9'
Tc Length (min) (feet)	
6.0	Direct Entry,
	Summary for Subcatchment 29S: B.2
Runoff =	1.56 cfs @ 12.09 hrs, Volume= 0.121 af, Depth= 4.74"
	R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs 5-yr Rainfall=5.55"
Area (sf)	CN Description
* 2,173 1,997	68 >75% Grass cover, Good, HSG A 98 Unconnected pavement, HSG A
9,211	98 Paved parking, HSG A
13,381 2,173	93 Weighted Average 16.24% Pervious Area
11,208	83.76% Impervious Area
1,997	17.82% Unconnected
-	
Tc Length (min) (feet)	Slope Velocity Capacity Description
Tc Length (min) (feet) 6.0	Slope Velocity Capacity Description
(min) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs) Direct Entry,
<u>(min) (feet)</u> 6.0	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs) Direct Entry, Direct Entry, Summary for Subcatchment 30S: B.3
(min) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs) Direct Entry,
(min) (feet) 6.0 Runoff = Runoff by SCS Ti	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs) Direct Entry, Direct Entry, Summary for Subcatchment 30S: B.3
(min) (feet) 6.0 Runoff = Runoff by SCS TI	Slope (ft/ft) Velocity (cfs) Capacity (cfs) Description Direct Entry, Summary for Subcatchment 30S: B.3 2.07 cfs @ 12.09 hrs, Volume= 0.170 af, Depth= 5.20" R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
(min) (feet) 6.0 Runoff = Runoff by SCS TI Type III 24-hr 25 <u>Area (sf)</u> * 731	Slope (ft/ft) (ft/sec) Capacity (cfs) Description Direct Entry, Summary for Subcatchment 30S: B.3 2.07 cfs @ 12.09 hrs, Volume= 0.170 af, Depth= 5.20" (R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Symmetry for Subcatchment 30S: B.3 2.07 cfs @ 12.09 hrs, Volume= 0.170 af, Depth= 5.20" (R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs S-yr Rainfall=5.55" CN Description 68 >75% Grass cover, Good, HSG A
(min) (feet) 6.0 Runoff = Runoff by SCS TI Type III 24-hr 25 <u>Area (sf)</u> * 731 2,575	Slope Velocity (ft/sec) Capacity (cfs) Description Direct Entry, Summary for Subcatchment 30S: B.3 2.07 cfs @ 12.09 hrs, Volume= 0.170 af, Depth= 5.20" R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs S-yr Rainfall=5.55" CN Description 68 >75% Grass cover, Good, HSG A 98 Unconnected pavement, HSG A
(min) (feet) 6.0 Runoff = Runoff by SCS Til Type III 24-hr 25 <u>Area (sf)</u> * 731 2,575 13,754 17,060	Slope Velocity (ft/sec) Capacity (cfs) Description Direct Entry, Summary for Subcatchment 30S: B.3 2.07 cfs @ 12.09 hrs, Volume= 0.170 af, Depth= 5.20" R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Symmetry for Subcatchment 30S: B.3 CN Description 68 >75% Grass cover, Good, HSG A 98 Paved parking, HSG A 97 Weighted Average
(min) (feet) 6.0 Runoff = Runoff by SCS TI Type III 24-hr 25 <u>Area (sf)</u> * 731 2,575 13,754 17,060 731	Slope (ft/ft) Velocity (ft/sec) Capacity (cfs) Description Direct Entry, Summary for Subcatchment 30S: B.3 2.07 cfs @ 12.09 hrs, Volume= 0.170 af, Depth= 5.20" R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Symmetry for Subcatchment 30S: B.3 2.07 cfs @ 12.09 hrs, Volume= 0.170 af, Depth= 5.20" (R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Symmetry Rainfall=5.55" CN Description 68 >75% Grass cover, Good, HSG A 98 Unconnected pavement, HSG A 97 Weighted Average 4.28% Pervious Area
(min) (feet) 6.0 Runoff = Runoff by SCS Til Type III 24-hr 25 <u>Area (sf)</u> * 731 2,575 13,754 17,060	Slope Velocity (ft/sec) Capacity (cfs) Description Direct Entry, Summary for Subcatchment 30S: B.3 2.07 cfs @ 12.09 hrs, Volume= 0.170 af, Depth= 5.20" R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Symmetry for Subcatchment 30S: B.3 CN Description 68 >75% Grass cover, Good, HSG A 98 Paved parking, HSG A 97 Weighted Average
(min) (feet) 6.0 Runoff = Runoff by SCS TI Type III 24-hr 25 <u>Area (sf)</u> * 731 2,575 13,754 17,060 731 16,329 2,575 Tc Length	Slope Velocity (ft/sec) Capacity (cfs) Description Direct Entry, Summary for Subcatchment 30S: B.3 2.07 cfs @ 12.09 hrs, Volume= 0.170 af, Depth= 5.20" R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Symmetry for Subcatchment 30S: B.3 2.07 cfs @ 12.09 hrs, Volume= 0.170 af, Depth= 5.20" (R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Symmetry Rainfall=5.55" CN Description 68 >75% Grass cover, Good, HSG A 98 Unconnected pavement, HSG A 98 Paved parking, HSG A 97 Weighted Average 4.28% Pervious Area 95.72% Impervious Area 95.72% Impervious Area 95.72% Impervious Area 95.77% Unconnected Slope Velocity Capacity Description
(min) (feet) 6.0 Runoff = Runoff by SCS TI Type III 24-hr 25 <u>Area (sf)</u> * 731 16,329 2,575	Slope Velocity Capacity Description Direct Entry, Summary for Subcatchment 30S: B.3 2.07 cfs @ 12.09 hrs, Volume= 0.170 af, Depth= 5.20" R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Symmetry Rainfall=5.55" CN Description 68 >75% Grass cover, Good, HSG A 98 Paved parking, HSG A 97 Weighted Average 4.28% Pervious Area 95.72% Impervious Area 98 99 91 92 93 94 <t< td=""></t<>
(min) (feet) 6.0 Runoff = Runoff by SCS TI Type III 24-hr 25 <u>Area (sf)</u> * 731 2,575 13,754 17,060 731 16,329 2,575 Tc Length (min) (feet)	Slope Velocity (ft/sec) Capacity (cfs) Description Direct Entry, Summary for Subcatchment 30S: B.3 2.07 cfs @ 12.09 hrs, Volume= 0.170 af, Depth= 5.20" R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Sign CN CN Description 68 >75% Grass cover, Good, HSG A 98 Paved parking, HSG A 97 Weighted Average 4.28% Pervious Area 95.72% Impervious Area 15.77% Unconnected Slope Velocity Slope Velocity Capacity Description (ft/ft) (ft/sec) 9Direct Entry,
(min) (feet) 6.0 Runoff = Runoff by SCS TI Type III 24-hr 25 <u>Area (sf)</u> * 731 2,575 13,754 17,060 731 16,329 2,575 Tc Length (min) (feet)	Slope Velocity Capacity Description Direct Entry, Summary for Subcatchment 30S: B.3 2.07 cfs @ 12.09 hrs, Volume= 0.170 af, Depth= 5.20" R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Symmetry Rainfall=5.55" CN Description 68 >75% Grass cover, Good, HSG A 98 Paved parking, HSG A 97 Weighted Average 4.28% Pervious Area 95.72% Impervious Area 98 99 91 92 93 94 <t< td=""></t<>
(min) (feet) 6.0 Runoff = Runoff by SCS TI Type III 24-hr 25 <u>Area (sf)</u> * 731 2,575 13,754 17,060 731 16,329 2,575 Tc Length (min) (feet)	Slope Velocity (ft/sec) Capacity (cfs) Description Direct Entry, Summary for Subcatchment 30S: B.3 2.07 cfs @ 12.09 hrs, Volume= 0.170 af, Depth= 5.20" R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Sign CN CN Description 68 >75% Grass cover, Good, HSG A 98 Paved parking, HSG A 97 Weighted Average 4.28% Pervious Area 95.72% Impervious Area 15.77% Unconnected Slope Velocity Slope Velocity Capacity Description (ft/ft) (ft/sec) 9Direct Entry,

		iter your company name here} -3a s/n 03590 © 2020 HydroCAD Software Solutions LLC	Page 92
Δ	rea (sf)	CN Description	
P	731	68 >75% Grass cover, Good, HSG A	
	2,575 13,754	98 Unconnected pavement, HSG A 98 Paved parking, HSG A	
	17,060	97 Weighted Average	
	731 16,329	4.28% Pervious Area 95.72% Impervious Area	
	2,575	15.77% Unconnected	
Tc (min)	Length (feet)		
6.0		Direct Entry,	
		Summary for Subcatchment 32S: B.5	
lunoff	=	2.64 cfs @ 12.09 hrs, Volume= 0.198 af, Depth= 4.19"	
		R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.0 -yr Rainfall=5.55"	05 hrs
A	rea (sf)	CN Description	
	8,616 8,034	 98 Paved parking, HSG A 68 >75% Grass cover, Good, HSG A 	
	1,324	98 Unconnected pavement, HSG A	
	6,653 24,627	98 Roofs, HSG A 88 Weighted Average	
	8,034	32.62% Pervious Area	
	16,593 1,324	67.38% Impervious Area 7.98% Unconnected	
	Length		
<u>(min)</u> 6.0	(feet)	(ft/ft) (ft/sec) (cfs) Direct Entry,	
		Summary for Subcatchment 33S: B.7	
Runoff	=	11.11 cfs @ 12.43 hrs, Volume= 1.412 af, Depth= 2.54"	
		R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.0	05 hrs
уретт	24-111 23-		

			Ir company 03590 © 2020		C Software Sol	utions LLC		Page 93
А	rea (sf)	CN	Description					
	29,407	68	>75% Grass		ood, HSG A			
	97,286	79	>75% Grass					
	9,046	89	>75% Grass					
	27,194	43	Woods, Goo					
	15,779	76	Woods, Goo					
	4,399 1,606	82 98	Woods, Goo Unconnecte					
	319	98	Unconnecte					
	5,475	98	Roofs, HSG					
2	90,511	71	Weighted A	verage				
2	283,111		97.45% Per					
	7,400		2.55% Impe					
	1,925		26.01% Und	connected				
Тс	Length	Slop	e Velocity	Capacity	Description			
(min)	(feet)	(ft/f		(cfs)	Description			
30.0					Direct Entr	۷.		
			Sumn	nome for (Subaatahm	ent 34S:	B.8	
			ounn	liary ior a	Subcatchin	ient 540.		
				-				
lunoff	=	1.49	cfs @ 12.09	-			Depth= 4.96"	
Runoff			cfs @ 12.09	9 hrs, Volu	ume=	0.119 af, D	Depth= 4.96"	- 0.05 hm
unoff b	y SCS TF	R-20 m	cfs @ 12.09 ethod, UH=S	9 hrs, Volu	ume=	0.119 af, D		= 0.05 hrs
unoff b	y SCS TF	R-20 m	cfs @ 12.09	9 hrs, Volu	ume=	0.119 af, D	Depth= 4.96"	= 0.05 hrs
unoff b ype III	y SCS TF	R-20 m	cfs @ 12.09 ethod, UH=S	9 hrs, Volu CS, Weigh	ume=	0.119 af, D	Depth= 4.96"	= 0.05 hrs
unoff b ype III	y SCS TF 24-hr 25- <u>rea (sf)</u> 9,724	R-20 m yr Rair	cfs @ 12.09 ethod, UH=S nfall=5.55" <u>Description</u> Paved parki	9 hrs, Volu CS, Weigh	ume= nted-CN, Time	0.119 af, D	Depth= 4.96"	= 0.05 hrs
unoff b ype III	y SCS TF 24-hr 25- <u>.rea (sf)</u> 9,724 1,396	R-20 m yr Rair <u>CN</u> 98 68	cfs @ 12.09 ethod, UH=S nfall=5.55" <u>Description</u> Paved parki >75% Grass	9 hrs, Volu CS, Weigh ng, HSG A	ume= nted-CN, Time	0.119 af, D	Depth= 4.96"	= 0.05 hrs
unoff b ype III	y SCS TF 24-hr 25- <u>rea (sf)</u> 9,724 1,396 1,364	R-20 m yr Rair <u>CN</u> 98 68 98	cfs @ 12.09 ethod, UH=S nfall=5.55" <u>Description</u> Paved parki >75% Grass <u>Unconnecte</u>	9 hrs, Volu CS, Weigh ng, HSG A s cover, Go	ume= nted-CN, Time	0.119 af, D	Depth= 4.96"	= 0.05 hrs
unoff b ype III	y SCS TF 24-hr 25- <u>rea (sf)</u> 9,724 1,396 <u>1,364</u> 12,484	R-20 m yr Rair <u>CN</u> 98 68	cfs @ 12.09 ethod, UH=S ifall=5.55" Description Paved parki >75% Grass Unconnecte Weighted A	9 hrs, Volu CS, Weigh ng, HSG A s cover, Go d pavemen verage	ume= hted-CN, Time A bood, HSG A ht, HSG A	0.119 af, D	Depth= 4.96"	= 0.05 hrs
unoff b ype III	y SCS TF 24-hr 25- <u>rea (sf)</u> 9,724 1,396 1,364 12,484 1,396	R-20 m yr Rair <u>CN</u> 98 68 98	cfs @ 12.09 ethod, UH=S ifall=5.55" <u>Description</u> Paved parki >75% Grass <u>Unconnecte</u> Weighted A: 11.18% Per	9 hrs, Volu CS, Weigh ng, HSG A s cover, Go d pavemen verage vious Area	ume= hted-CN, Time A bod, HSG A nt, HSG A	0.119 af, D	Depth= 4.96"	= 0.05 hrs
unoff b ype III	y SCS TF 24-hr 25- 9,724 1,396 1,364 12,484 1,396 11,088	R-20 m yr Rair <u>CN</u> 98 68 98	cfs @ 12.09 ethod, UH=S ifall=5.55" Description Paved parki >75% Grass Unconnecte Weighted A 11.18% Per 88.82% Imp	9 hrs, Volu CS, Weigh ng, HSG A s cover, Go d pavemen verage vious Area ervious Area	ume= hted-CN, Time A bod, HSG A nt, HSG A	0.119 af, D	Depth= 4.96"	= 0.05 hrs
unoff b ype III	y SCS TF 24-hr 25- <u>rea (sf)</u> 9,724 1,396 1,364 12,484 1,396	R-20 m yr Rair <u>CN</u> 98 68 98	cfs @ 12.09 ethod, UH=S ifall=5.55" <u>Description</u> Paved parki >75% Grass <u>Unconnecte</u> Weighted A: 11.18% Per	9 hrs, Volu CS, Weigh ng, HSG A s cover, Go d pavemen verage vious Area ervious Area	ume= hted-CN, Time A bod, HSG A nt, HSG A	0.119 af, D	Depth= 4.96"	= 0.05 hrs
Lunoff b ype III A	y SCS TF 24-hr 25- 9,724 1,396 1,364 12,484 1,396 11,088	R-20 m yr Rair 98 68 98 95	cfs @ 12.09 ethod, UH=S ifall=5.55" Description Paved parki >75% Grass Unconnecte Weighted A 11.18% Per 88.82% Imp	P hrs, Volu CS, Weigh ng, HSG A s cover, Gc d pavemen verage vious Area vervious Area connected	ume= A A Dood, HSG A nt, HSG A a a a rea	0.119 af, D	Depth= 4.96"	= 0.05 hrs
tunoff b ype III <u>A</u> Tc (min)	y SCS TF 24-hr 25- 9,724 1,396 1,364 1,364 1,396 11,088 1,364	R-20 m yr Rair 98 68 98 95	cfs @ 12.09 ethod, UH=S fall=5.55" Description Paved parki >75% Grass Unconnecte Weighted A 11.18% Per 88.82% Imp 12.30% Unc e Velocity	P hrs, Volu CS, Weigh ng, HSG A s cover, Gc d pavemen verage vious Area vervious Area connected	ume= A bod, HSG A nt, HSG A nt, HSG A bea Description	0.119 af, E	Depth= 4.96"	= 0.05 hrs
tunoff b ype III A Tc	y SCS TF 24-hr 25- 9,724 1,396 1,364 12,484 1,396 11,088 1,364 Length	R-20 m yr Rair 98 68 98 95 Slop	cfs @ 12.09 ethod, UH=S fall=5.55" Description Paved parki >75% Grass Unconnecte Weighted A 11.18% Per 88.82% Imp 12.30% Unc e Velocity	A hrs, Volu CS, Weigh ng, HSG A s cover, Go d pavemen verage vious Area pervious Area connected Capacity	ume= A A Dood, HSG A nt, HSG A a a a rea	0.119 af, E	Depth= 4.96"	= 0.05 hrs
tunoff b ype III <u>A</u> Tc (min)	y SCS TF 24-hr 25- 9,724 1,396 1,364 12,484 1,396 11,088 1,364 Length	R-20 m yr Rair 98 68 98 95 Slop	cfs @ 12.09 ethod, UH=S fall=5.55" <u>Description</u> Paved parki >75% Grass <u>Unconnecte</u> Weighted A 11.18% Per 88.82% Imp 12.30% Unc e Velocity t) (ft/sec)	9 hrs, Volu CS, Weigh ng, HSG A s cover, Go d pavemen verage vious Area vervious Area vervious Area connected Capacity (cfs)	ume= A bod, HSG A nt, HSG A nt, HSG A bea Description	0.119 af, E Span= 0.00	Depth= 4.96" D-72.00 hrs, dt	= 0.05 hrs
Tc (min) 6.0	y SCS TF 24-hr 25- 9,724 1,396 1,364 12,484 1,396 11,088 1,364 Length	R-20 m. yr Rair 98 68 98 95 Slop (ft/f	cfs @ 12.09 ethod, UH=S fall=5.55" <u>Description</u> Paved parki >75% Grass <u>Unconnecte</u> Weighted A 11.18% Per 88.82% Imp 12.30% Unc e Velocity t) (ft/sec)	A hrs, Volu CS, Weigh ng, HSG A s cover, Go d pavemen verage vious Area pervious Area pervious Area connected Capacity (cfs)	ume= hted-CN, Time bod, HSG A ht, HSG A hea Description Direct Entr Subcatchm	0.119 af, E Span= 0.00	Depth= 4.96" D-72.00 hrs, dt	= 0.05 hrs
Tc (min) 6.0	y SCS TF 24-hr 25- rea (sf) 9,724 1,396 12,484 1,396 11,088 1,364 Length (feet)	R-20 m. yr Rair 98 68 98 95 Slop (ft/f	cfs @ 12.09 ethod, UH=S ifall=5.55" <u>Description</u> >75% Grass <u>Unconnecte</u> Weighted A 11.18% Per 12.30% Unc e Velocity t) (ft/sec) Sumn cfs @ 12.28	P hrs, Volu CS, Weigh ng, HSG A s cover, Go d pavemen verage vious Area eervious Ar connected Capacity (cfs) nary for \$	ume= ated-CN, Time a bod, HSG A atea Description Direct Entr Subcatchm ume=	0.119 af, E Span= 0.00 y, eent 35S: 0	Depth= 4.96" D-72.00 hrs, dt	
Tc (min) 6.0	y SCS TF 24-hr 25- 79,724 1,396 11,364 12,484 1,396 11,088 1,364 Length (feet) = y SCS TF	R-20 m. yr Rair 98 68 98 95 Slop (ft/f 13.19 R-20 m	cfs @ 12.09 ethod, UH=S ifall=5.55" <u>Description</u> Paved parki >75% Grass <u>Unconnecte</u> Weighted A 11.18% Per 88.82% Imp 12.30% Unc e Velocity t) (ft/sec) Summ cfs @ 12.28 ethod, UH=S	P hrs, Volu CS, Weigh ng, HSG A s cover, Go d pavemen verage vious Area eervious Ar connected Capacity (cfs) nary for \$	ume= ated-CN, Time a bod, HSG A atea Description Direct Entr Subcatchm ume=	0.119 af, E Span= 0.00 y, eent 35S: 0	Depth= 4.96" D-72.00 hrs, dt	
Tc (min) 6.0	y SCS TF 24-hr 25- 79,724 1,396 11,364 12,484 1,396 11,088 1,364 Length (feet) = y SCS TF	R-20 m. yr Rair 98 68 98 95 Slop (ft/f 13.19 R-20 m	cfs @ 12.09 ethod, UH=S ifall=5.55" <u>Description</u> >75% Grass <u>Unconnecte</u> Weighted A: 11.18% Per 88.82% Imp 12.30% Unc e Velocity t) (ft/sec) Sumn cfs @ 12.28	P hrs, Volu CS, Weigh ng, HSG A s cover, Go d pavemen verage vious Area eervious Ar connected Capacity (cfs) nary for \$	ume= ated-CN, Time a bod, HSG A atea Description Direct Entr Subcatchm ume=	0.119 af, E Span= 0.00 y, eent 35S: 0	Depth= 4.96" D-72.00 hrs, dt	
Tc (min) 6.0	y SCS TF 24-hr 25- 79,724 1,396 11,364 12,484 1,396 11,088 1,364 Length (feet) = y SCS TF	R-20 m. yr Rair 98 68 98 95 Slop (ft/f 13.19 R-20 m	cfs @ 12.09 ethod, UH=S ifall=5.55" <u>Description</u> Paved parki >75% Grass <u>Unconnecte</u> Weighted A 11.18% Per 88.82% Imp 12.30% Unc e Velocity t) (ft/sec) Summ cfs @ 12.28 ethod, UH=S	P hrs, Volu CS, Weigh ng, HSG A s cover, Go d pavemen verage vious Area eervious Ar connected Capacity (cfs) nary for \$	ume= ated-CN, Time a bod, HSG A atea Description Direct Entr Subcatchm ume=	0.119 af, E Span= 0.00 y, eent 35S: 0	Depth= 4.96" D-72.00 hrs, dt	
Runoff b ype III <u>A</u> Tc (min) 6.0 Runoff b	y SCS TF 24-hr 25- 79,724 1,396 11,364 12,484 1,396 11,088 1,364 Length (feet) = y SCS TF	R-20 m. yr Rair 98 68 98 95 Slop (ft/f 13.19 R-20 m	cfs @ 12.09 ethod, UH=S ifall=5.55" <u>Description</u> Paved parki >75% Grass <u>Unconnecte</u> Weighted A 11.18% Per 88.82% Imp 12.30% Unc e Velocity t) (ft/sec) Summ cfs @ 12.28 ethod, UH=S	P hrs, Volu CS, Weigh ng, HSG A s cover, Go d pavemen verage vious Area eervious Ar connected Capacity (cfs) nary for \$	ume= ated-CN, Time a bod, HSG A atea Description Direct Entr Subcatchm ume=	0.119 af, E Span= 0.00 y, eent 35S: 0	Depth= 4.96" D-72.00 hrs, dt	
Runoff b ype III <u>A</u> Tc (min) 6.0 Runoff b	y SCS TF 24-hr 25- 79,724 1,396 11,364 12,484 1,396 11,088 1,364 Length (feet) = y SCS TF	R-20 m. yr Rair 98 68 98 95 Slop (ft/f 13.19 R-20 m	cfs @ 12.09 ethod, UH=S ifall=5.55" <u>Description</u> Paved parki >75% Grass <u>Unconnecte</u> Weighted A 11.18% Per 88.82% Imp 12.30% Unc e Velocity t) (ft/sec) Summ cfs @ 12.28 ethod, UH=S	P hrs, Volu CS, Weigh ng, HSG A s cover, Go d pavemen verage vious Area eervious Ar connected Capacity (cfs) nary for \$	ume= ated-CN, Time a bod, HSG A atea Description Direct Entr Subcatchm ume=	0.119 af, E Span= 0.00 y, eent 35S: 0	Depth= 4.96" D-72.00 hrs, dt	
Tc (min) 6.0	y SCS TF 24-hr 25- 79,724 1,396 11,364 12,484 1,396 11,088 1,364 Length (feet) = y SCS TF	R-20 m. yr Rair 98 68 98 95 Slop (ft/f 13.19 R-20 m	cfs @ 12.09 ethod, UH=S ifall=5.55" <u>Description</u> Paved parki >75% Grass <u>Unconnecte</u> Weighted A 11.18% Per 88.82% Imp 12.30% Unc e Velocity t) (ft/sec) Summ cfs @ 12.28 ethod, UH=S	P hrs, Volu CS, Weigh ng, HSG A s cover, Go d pavemen verage vious Area eervious Ar connected Capacity (cfs) nary for \$	ume= ated-CN, Time a bod, HSG A atea Description Direct Entr Subcatchm ume=	0.119 af, E Span= 0.00 y, eent 35S: 0	Depth= 4.96" D-72.00 hrs, dt	

HydroCAD® 10.10-		company 3590 © 2020			olutions	LLC		Page 94
Area (sf)	CN A	Adj Desc	ription					
128,543	68			ver, Good,				
69,229 16,469	89 82		% Grass co ds, Good, I	ver, Good,	HSG D			
14,141	98			avement, H	SG A			
7,926	98	Roof	s, HSG A					
236,308	78			age, UI Adju	sted			
214,241 22,067			6% Perviou % Impervic					
14,141			8% Unconr					
Tc Length	Slope	Velocity	Capacity	Descriptio	n			
(min) (feet) 20.0	(ft/ft)	(ft/sec)	(cfs)	Direct En	trv			
20.0		-						
		Sumr	nary for	Subcatch	ment	36S: C.2		
Runoff =	2.62 cf	s@ 12.0	9 hrs, Volu	ume=	0.204	l af, Depth	1= 4.74"	
Runoff by SCS TF Type III 24-hr 25-			CS, Weigh	nted-CN, Tir	ne Spar	= 0.00-72.	.00 hrs, dt= 0.05 h	rs
Area (sf)	CN D	Description						
12,989		Paved parki						
3,687 2,989		75% Grass Jnconnecte		ood, HSG A				
2,851		Roofs, HSG		ni, 1100 A				
22,516		Veighted A						
3,687 18.829		6.38% Per 3.62% Imp						
2,989		5.87% Und		ea				
Tc Length	Slope	Velocity	Capacity	Descriptio	'n			
(min) (feet) 6.0	(ft/ft)	(ft/sec)	(cfs)	Direct En	+ vn /			
0.0				Direct En	•			
		Sumr	nary for	Subcatch	ment 3	37S: C.3		
Runoff =	1.31 cf	s@ 12.0	9 hrs, Volu	ume=	0.097	af, Depth	n= 4.09"	
Runoff by SCS TF ype III 24-hr 25-			CS, Weigh	nted-CN, Tir	ne Spar	= 0.00-72.	.00 hrs, dt= 0.05 h	rs
Area (sf)		Description						
5,266		Paved park						
4,754 509		75% Grass Roofs, HSG		ood, HSG A				
1,900		Roofs, HSC						
12,429		Veighted A						
		8.25% Per 1.75% Imp						
4,754 7,675		71.7 9 70 II MC	CIVIOUS AI	-a				
4,754 7,675	0							

6842-Post Prepared by	t Type III 24-hr 25-yr Rainfall=5.55" y {enter your company name here}	6842-Post Prepared by {enter your c
	10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 95	HydroCAD® 10.10-3a s/n 035
Tc Ler (min) (f	ength Slope Velocity Capacity Description feet) (ft/ft) (ft/sec) (cfs)	Tc Length Slope (min) (feet) (ft/ft)
6.0	Direct Entry,	6.0
	Summary for Subcatchment 38S: C.4	
Runoff =	= 0.57 cfs @ 12.09 hrs, Volume= 0.047 af, Depth= 5.31"	Runoff = 0.88 cfs
Runoff by SC	CS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs	Runoff by SCS TR-20 meth Type III 24-hr 25-yr Rainfall
Type III 24-hi	nr 25-yr Rainfall=5.55"	Area (sf) CN De
Area (6,072 98 Pa
· · · · · · · · · · · · · · · · · · ·	655 98 Paved parking, HSG A	<u>1,116 98 Ro</u>
4,6	655 100.00% Impervious Area	7,188 98 W 7,188 10
Tc Ler		,
	feet) (ft/ft) (ft/sec) (cfs)	Tc Length Slope
<u>(min) (f</u> 6.0	Direct Entry,	<u>(min) (feet) (ft/ft)</u> 6.0
		(min) (feet) (ft/ft)
`	Direct Entry, Summary for Subcatchment 39S: C.5	(min) (feet) (ft/ft)
6.0 Runoff =	Direct Entry, Summary for Subcatchment 39S: C.5 = 0.71 cfs @ 12.09 hrs, Volume= 0.060 af, Depth= 5.31"	<u>(min) (feet) (ft/ft)</u> 6.0
6.0 Runoff = Runoff by SC	Direct Entry, Summary for Subcatchment 39S: C.5	<u>(min) (feet) (ft/ft)</u> 6.0 Runoff = 0.93 cfs Runoff by SCS TR-20 meth
6.0 Runoff = Runoff by SC	Direct Entry, Summary for Subcatchment 39S: C.5 = 0.71 cfs @ 12.09 hrs, Volume= 0.060 af, Depth= 5.31" CS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs or 25-yr Rainfall=5.55"	(min) (feet) (ft/ft) 6.0 Runoff = 0.93 cfs Runoff by SCS TR-20 metho Type III 24-hr 25-yr Rainfall
6.0 Runoff = Runoff by SC Type III 24-hi <u>Area (</u> 4,0	Direct Entry, Direct Entry, Summary for Subcatchment 39S: C.5 = 0.71 cfs @ 12.09 hrs, Volume= 0.060 af, Depth= 5.31" CS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs ar 25-yr Rainfall=5.55" (sf) CN Description 080 98 Paved parking, HSG A	(min) (feet) (ft/ft) 6.0 Runoff = 0.93 cfs Runoff by SCS TR-20 meth Type III 24-hr 25-yr Rainfall <u>Area (sf) CN De</u>
6.0 Runoff = Runoff by SC Type III 24-hi <u>Area</u> (4,0 1,7	Direct Entry, Direct Entry, Summary for Subcatchment 39S: C.5 = 0.71 cfs @ 12.09 hrs, Volume= 0.060 af, Depth= 5.31" CS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs ar 25-yr Rainfall=5.55" (sf) CN Description 080 98 Paved parking, HSG A 777 98 Unconnected pavement, HSG A	<u>(min) (feet) (ft/ft)</u> 6.0 Runoff = 0.93 cfs Runoff by SCS TR-20 meth Type III 24-hr 25-yr Rainfal <u>Area (sf) CN Do</u> 7,639 98 Pa
6.0 Runoff = Runoff by SC Type III 24-hi Area (4,0 1,7 5,8	Direct Entry, Direct Entry, Summary for Subcatchment 39S: C.5 = 0.71 cfs @ 12.09 hrs, Volume= 0.060 af, Depth= 5.31" CS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs ar 25-yr Rainfall=5.55" (sf) CN Description 080 98 Paved parking, HSG A	<u>(min) (feet) (ft/ft)</u> 6.0 Runoff = 0.93 cfs Runoff by SCS TR-20 meth Type III 24-hr 25-yr Rainfall <u>Area (sf) CN De</u> 7,639 98 Pa
6.0 Runoff by SC Type III 24-hi <u>Area (</u> 4,0 1,7 5,8	Direct Entry, Direct Entry, Summary for Subcatchment 39S: C.5 = 0.71 cfs @ 12.09 hrs, Volume= 0.060 af, Depth= 5.31" CS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs or 25-yr Rainfall=5.55" (sf) CN Description 080 98 Paved parking, HSG A 777 98 Unconnected pavement, HSG A 857 98 Weighted Average	<u>(min) (feet) (ft/ft)</u> 6.0 Runoff = 0.93 cfs Runoff by SCS TR-20 methor Type III 24-hr 25-yr Rainfall <u>Area (sf) CN De</u> <u>7,639 98 Pa</u> 7,639 10 Tc Length Slope
6.0 Runoff = Runoff by SC Type III 24-hi <u>Area (</u> 4,0 1,7 5,8 5,8 1,7	Direct Entry, Direct Entry, Summary for Subcatchment 39S: C.5 = 0.71 cfs @ 12.09 hrs, Volume= 0.060 af, Depth= 5.31" CS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs nr 25-yr Rainfall=5.55" (sf) CN Description 080 98 Paved parking, HSG A 777 98 Unconnected pavement, HSG A 857 98 Weighted Average 857 100.00% Impervious Area 777 30.34% Unconnected	<u>(min) (feet) (ft/ft)</u> 6.0 Runoff = 0.93 cfs Runoff by SCS TR-20 methe Type III 24-hr 25-yr Rainfall <u>Area (sf) CN Dec</u> 7,639 98 Pe 7,639 10 Tc Length Slope <u>(min) (feet) (ft/ft)</u>
6.0 Runoff by SC Type III 24-hi <u>Area (</u> 4,0 1,7 5,8 5,8 1,7 Tc Ler	Direct Entry, Summary for Subcatchment 39S: C.5 = 0.71 cfs @ 12.09 hrs, Volume= 0.060 af, Depth= 5.31" CS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs or 25-yr Rainfall=5.55" (sf) CN Description 080 98 Paved parking, HSG A 777 98 Unconnected pavement, HSG A 857 98 Weighted Average 857 100.00% Impervious Area 777 30.34% Unconnected ength Slope Velocity Obscription (ft/ft) (ft/ft)	<u>(min) (feet) (ft/ft)</u> 6.0 Runoff = 0.93 cfs Runoff by SCS TR-20 meth Type III 24-hr 25-yr Rainfall <u>Area (sf) CN De</u> <u>7,639 98 Pa</u> 7,639 10 Tc Length Slope
6.0 Runoff by SC Type III 24-hi <u>Area (</u> 4,0 1,7 5,8 5,8 1,7 Tc Ler	Direct Entry, Direct Entry, Summary for Subcatchment 39S: C.5 = 0.71 cfs @ 12.09 hrs, Volume= 0.060 af, Depth= 5.31" CS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs colspan="2">Span= 0.00-72.00 hrs, dt= 0.05 hrs or 25-yr Rainfall=5.55" (sf) CN Description 080 98 Paved parking, HSG A 777 98 Unconnected pavement, HSG A 857 100.00% Impervious Area 777 30.34% Unconnected escription	<u>(min) (feet) (ft/ft)</u> 6.0 Runoff = 0.93 cfs Runoff by SCS TR-20 meth- Type III 24-hr 25-yr Rainfall <u>Area (sf) CN De</u> 7,639 98 Pe 7,639 10 Tc Length Slope <u>(min) (feet) (ft/ft)</u>
6.0 Runoff by SC Type III 24-hi <u>Area (</u> 4,0 1,7 5,8 5,8 1,7 Tc Ler (min) (f	Direct Entry, Summary for Subcatchment 39S: C.5 = 0.71 cfs @ 12.09 hrs, Volume= 0.060 af, Depth= 5.31" CS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs or 25-yr Rainfall=5.55" (sf) CN Description 080 98 Paved parking, HSG A 777 98 Unconnected pavement, HSG A 857 98 Weighted Average 857 100.00% Impervious Area 777 30.34% Unconnected ength Slope Velocity Obscription (ft/ft) (ft/ft)	<u>(min) (feet) (ft/ft)</u> 6.0 Runoff = 0.93 cfs Runoff by SCS TR-20 meth Type III 24-hr 25-yr Rainfal <u>Area (sf) CN Dr</u> 7,639 98 Pa 7,639 10 <u>Tc Length Slope</u> <u>(min) (feet) (ft/ft)</u> 6.0
6.0 Runoff by SC Type III 24-hi Area (4.0 1.7 5.8 5.8 1.7 Tc Ler (min) (f 6.0	Direct Entry, Summary for Subcatchment 39S: C.5 = 0.71 cfs @ 12.09 hrs, Volume= 0.060 af, Depth= 5.31" CS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs or 25-yr Rainfall=5.55" (sf) CN Description 080 98 Paved parking, HSG A 777 98 Unconnected pavement, HSG A 857 100.00% Impervious Area 777 30.34% Unconnected Direct Entry, Direct Entry, Summary for Subcatchment 40S: C.6	$\frac{\text{(min)} \text{(feet)} \text{(ft/ft)}}{6.0}$ Runoff = 0.93 cfs Runoff by SCS TR-20 meth Type III 24-hr 25-yr Rainfal $\frac{\text{Area (sf)} \text{CN} \text{Dr}}{7,639 \text{ 98} \text{ Pa}}$ 7,639 10 Tc Length Slope (min) (feet) (ft/ft) 6.0 Runoff = 1.06 cfs Runoff by SCS TR-20 meth
6.0 Runoff by SC Type III 24-hi <u>Area (</u> 4,0 1,7 5,8 5,8 5,8 1,7 Tc Ler (min) (f 6.0 Runoff = Runoff by SC	Direct Entry, Direct Entry, Summary for Subcatchment 39S: C.5 = 0.71 cfs @ 12.09 hrs, Volume= 0.060 af, Depth= 5.31" CS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs pr 25-yr Rainfall=5.55" (sf) CN Description 080 98 Paved parking, HSG A 777 98 Unconnected pavement, HSG A 857 100.00% Impervious Area 777 30.34% Unconnected Direct Entry, CS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs	$\frac{\text{(min)} (\text{feet)} (\text{ft/ft})}{6.0}$ Runoff = 0.93 cfs Runoff by SCS TR-20 meth Type III 24-hr 25-yr Rainfal $\frac{\text{Area} (\text{sf}) \text{ CN De}}{7,639 98 \text{Pe}}{7,639 100}$ Tc Length Slope $\frac{\text{(min)} (\text{feet)} (\text{ft/ft})}{6.0}$ Runoff = 1.06 cfs Runoff by SCS TR-20 meth Type III 24-hr 25-yr Rainfal
6.0 Runoff by SC Type III 24-hi <u>Area (</u> 4,0 1,7 5,8 5,8 5,8 1,7 Tc Ler (min) (f 6.0 Runoff = Runoff by SC	Direct Entry, Direct Entry, Summary for Subcatchment 39S: C.5 = 0.71 cfs @ 12.09 hrs, Volume= 0.060 af, Depth= 5.31" CS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs pr 25-yr Rainfall=5.55" (sf) CN Description 080 98 Paved parking, HSG A 777 98 Unconnected pavement, HSG A 857 100.00% Impervious Area 777 30.34% Unconnected Direct Entry, Direct S @ 12.09 hrs, Volume= 0.041 af, Depth= 5.31"	(min) (feet) (ft/ft) 6.0 Runoff = 0.93 cfs Runoff by SCS TR-20 meth Type III 24-hr 25-yr Rainfal <u>Area (sf) CN Du</u> 7,639 98 Pa 7,639 10 Tc Length Slope (min) (feet) (ft/ft) 6.0 Runoff = 1.06 cfs Runoff by SCS TR-20 meth Type III 24-hr 25-yr Rainfal <u>Area (sf) CN Du</u>
6.0 Runoff by SC Type III 24-hi <u>Area (</u> 4,0 1,7 5,8 5,8 5,8 1,7 Tc Ler (min) (f 6.0 Runoff = Runoff sy SC	Direct Entry, Summary for Subcatchment 39S: C.5 = 0.71 cfs @ 12.09 hrs, Volume= 0.060 af, Depth= 5.31" CS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs or 25-yr Rainfall=5.55" (sf) CN Description 080 98 Paved parking, HSG A 777 98 Unconnected pavement, HSG A 857 98 Weighted Average 857 100.00% Impervious Area 777 30.34% Unconnected Intercent Entry, Direct Entry, Direct Entry, Summary for Subcatchment 40S: C.6 = 0.49 cfs @ 12.09 hrs, Volume= 0.041 af, Depth= 5.31" CS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs or 25-yr Rainfall=5.55"	$\frac{(\min) (\text{feet}) (\text{fl/ft})}{6.0}$ Runoff = 0.93 cfs Runoff by SCS TR-20 method Type III 24-hr 25-yr Rainfall $\frac{\text{Area (sf) CN De}}{7,639 98 Pa}$ 7,639 10 Tc Length Slope (min) (feet) (ft/ft) 6.0 Runoff = 1.06 cfs Runoff by SCS TR-20 method Type III 24-hr 25-yr Rainfall $\frac{\text{Area (sf) CN De}}{8,732 98 Pa}$
6.0 Runoff = Runoff by SC Type III 24-hi Area (4.0 1.7 5.8 5.8 1.7 Tc Ler (min) (fr 6.0 Runoff = Runoff by SC Type III 24-hi Area (4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	Direct Entry, Summary for Subcatchment 39S: C.5 = 0.71 cfs @ 12.09 hrs, Volume= 0.060 af, Depth= 5.31" CS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs or 25-yr Rainfall=5.55" (sf) CN Description 080 98 Paved parking, HSG A 777 98 Unconnected pavement, HSG A 857 98 Weighted Average 857 100.00% Impervious Area 777 30.34% Unconnected Intercent Entry, Direct Entry, Direct Entry, Summary for Subcatchment 40S: C.6 = 0.49 cfs @ 12.09 hrs, Volume= 0.041 af, Depth= 5.31" CS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs or 25-yr Rainfall=5.55"	<u>(min) (feet) (ft/ft)</u> 6.0 Runoff = 0.93 cfs Runoff by SCS TR-20 meth Type III 24-hr 25-yr Rainfall <u>Area (sf) CN De</u> 7,639 98 Pa 7,639 10 Tc Length Slope <u>(min) (feet) (ft/ft)</u> 6.0 Runoff = 1.06 cfs Runoff by SCS TR-20 meth Type III 24-hr 25-yr Rainfall <u>Area (sf) CN De</u>

repared by {en /droCAD® 10.10/					lutions LLC			Page 90
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descriptior	ı			
6.0				Direct Ent	ry,			
		Sumr	nary for S	Subcatchr	nent 41S	: C.7		
inoff =	0.88 cf	s@ 12.0	9 hrs, Volu	me=	0.073 af,	Depth= 5.3	31"	
noff by SCS TI pe III 24-hr 25			CS, Weigh	ted-CN, Tim	e Span= 0.	.00-72.00 hr	s, dt= 0.05 hrs	6
Area (sf)	CN E	Description						
6,072 1,116		Paved park Roofs, HSG	ing, HSG A S A					
7,188		Veighted A 00.00% Im	verage pervious A	rea				
7,188								
7,188 Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descriptior	ı			
Tc Length				Description				
Tc Length (min) (feet)		(ft/sec)	(cfs)		ry,	: C.8		
Tc Length (min) (feet) 6.0	(ft/ft)	(ft/sec)	(cfs)	Direct Ent Subcatchr	^{ry,} nent 42S		21"	
Tc Length (<u>min) (feet)</u> 6.0 unoff =	(ft/ft) 0.93 cf	(ft/sec) Sumr s @ 12.0	(cfs) mary for \$ 9 hrs, Volu	Direct Ent Subcatchr	ry, nent 42S 0.078 af,	Depth= 5.3		
Tc Length (min) (feet) 6.0 unoff = unoff by SCS Tf	(ft/́ft) 0.93 cf ⋜-20 metl	(ft/sec) Sumr s @ 12.09 nod, UH=S	(cfs) mary for \$ 9 hrs, Volu	Direct Ent Subcatchr	ry, nent 42S 0.078 af,	Depth= 5.3		3
Tc Length (min) (feet) 6.0 unoff = unoff by SCS Tf	(ft/ft) 0.93 cf R-20 metl -yr Rainfa	(ft/sec) Sumr s @ 12.09 nod, UH=S	(cfs) mary for \$ 9 hrs, Volu CS, Weigh	Direct Ent Subcatchr	ry, nent 42S 0.078 af,	Depth= 5.3		5
Tc Length (min) (feet) 6.0 unoff = unoff by SCS Ti pe III 24-hr 25-	(ft/ft) 0.93 cf R-20 mett -yr Rainfa <u>CN E</u>	(ft/sec) Sumr s @ 12.0 nod, UH=S nll=5.55" Description	(cfs) mary for \$ 9 hrs, Volu CS, Weigh	Direct Ent Subcatchr me= ted-CN, Tim	ry, nent 42S 0.078 af,	Depth= 5.3		5
Tc Length (min) (feet) 6.0 Inoff = Inoff by SCS Tf pe III 24-hr 25 Area (sf)	(ft/ft) 0.93 cf R-20 metl -yr Rainfa <u>CN E</u> 98 F	(ft/sec) Sumr s @ 12.0 nod, UH=S ull=5.55" Description Paved park	(cfs) nary for \$ 9 hrs, Volu CS, Weigh	Direct Ent Subcatchr me= ted-CN, Tim	ry, nent 42S 0.078 af,	Depth= 5.3		5
Tc Length (min) (feet) 6.0 unoff = unoff by SCS Tf pe III 24-hr 7,639 7,639 Tc Tc (min) (feet)	(ft/ft) 0.93 cf R-20 metl -yr Rainfa <u>CN E</u> 98 F	(ft/sec) Sumr s @ 12.0 nod, UH=S ull=5.55" Description Paved park	(cfs) nary for \$ 9 hrs, Volu CS, Weigh	Direct Ent Subcatchr me= ted-CN, Tim rea	ry, nent 42S 0.078 af, e Span= 0.	Depth= 5.3		5
Tc Length (min) (feet) 6.0 unoff = unoff by SCS Ti rpe III 24-hr 25- Area (sf) 7,639 7,639 Tc Tc	(ft/ft) 0.93 cf R-20 mett -yr Rainfa <u>CN E</u> 98 F 1 Slope	(ft/sec) Sumr s @ 12.0 nod, UH=S ill=5.55" Description 2aved park 00.00% Irr Velocity	(cfs) mary for \$ 9 hrs, Volu CS, Weigh ing, HSG A pervious A Capacity	Direct Ent Subcatchr ime= ted-CN, Tim rea	ry, nent 42S 0.078 af, e Span= 0.	Depth= 5.3		5
Tc Length (min) (feet) 6.0 unoff = unoff by SCS Tf pe III 24-hr 25: Area (sf) 7,639 7,639 Tc Length (min) (feet)	(ft/ft) 0.93 cf R-20 mett -yr Rainfa <u>CN E</u> 98 F 1 Slope	(ft/sec) Sumr s @ 12.0 nod, UH=S lill=5.55" Description ?aved park 00.00% In Velocity (ft/sec)	(cfs) nary for \$ 9 hrs, Volu CS, Weigh ng, HSG A npervious A Capacity (cfs)	Direct Ent Subcatchr me= ted-CN, Tim rea	ry, nent 42S 0.078 af, e Span= 0.	Depth= 5.3		5
Tc Length (min) 6.0	(ft/ft) 0.93 cf -yr Rainfa -yr Rainfa -yr Rainfa -yr 98 F 98 F 1 Slope (ft/ft)	(ft/sec) Sumr s @ 12.0 nod, UH=S ill=5.55" Description 2aved park 00.00% In Velocity (ft/sec) Sumr	(cfs) nary for \$ 9 hrs, Volu CS, Weigh ng, HSG A npervious A Capacity (cfs)	Direct Ent Subcatchr ime= ted-CN, Tim rea Descriptior Direct Ent Subcatchr	ry, nent 42S 0.078 af, e Span= 0. n ry, nent 43S	Depth= 5.3	s, dt= 0.05 hrs	3
Tc Length (min) (feet) 6.0 unoff by SCS Ti rpe III 24-hr 25- Area (sf) 7,639 7,639 Tc Length (min) (feet) 6.0	(ft/ft) 0.93 cf -yr Rainfa -yr Ra	(ft/sec) Sumr s @ 12.0 nod, UH=S ill=5.55" Description Paved park 00.00% Irr Velocity (ft/sec) Sumr s @ 12.0 nod, UH=S	(cfs) nary for \$ 9 hrs, Volu CS, Weigh ing, HSG A pervious A Capacity (cfs) nary for \$ 9 hrs, Volu	Direct Ent Subcatchr me= ted-CN, Tim rea Descriptior Direct Ent Subcatchr	ry, nent 42S 0.078 af, e Span= 0. n ry, nent 43S 0.089 af,	Depth= 5.3 00-72.00 hr : C.9 Depth= 5.3	s, dt= 0.05 hrs	
Tc Length (min) (min) (feet) 6.0	(ft/ft) 0.93 cf R-20 mett -yr Rainfa <u>CN E</u> <u>98 F</u> 1 Slope (ft/ft) 1.06 cf R-20 mett	(ft/sec) Sumr s @ 12.0 nod, UH=S ill=5.55" Description Paved park 00.00% Irr Velocity (ft/sec) Sumr s @ 12.0 nod, UH=S	(cfs) nary for \$ 9 hrs, Volu CS, Weigh ing, HSG A pervious A Capacity (cfs) nary for \$ 9 hrs, Volu	Direct Ent Subcatchr me= ted-CN, Tim rea Descriptior Direct Ent Subcatchr	ry, nent 42S 0.078 af, e Span= 0. n ry, nent 43S 0.089 af,	Depth= 5.3 00-72.00 hr : C.9 Depth= 5.3	s, dt= 0.05 hrs	
Tc Length (min) (min) (feet) 6.0 (feet) unoff = unoff pe III 24-hr 25- Area (sf) 7,639 7,639 7,639 Tc Length (min) 6.0	(ft/ft) 0.93 cf R-20 meti yr Rainfa <u>98 F</u> 1 Slope (ft/ft) 1.06 cf R-20 meti yr Rainfa <u>CN E</u>	(ft/sec) Sumr s @ 12.0 nod, UH=S lil=5.55" Description 2aved park 00.00% In Velocity (ft/sec) Sumr s @ 12.0 nod, UH=S ill=5.55" Description	(cfs) nary for \$ 9 hrs, Volu CS, Weigh ing, HSG A pervious A Capacity (cfs) nary for \$ 9 hrs, Volu	Direct Ent Subcatchr ime= ted-CN, Tim rea Descriptior Direct Ent Subcatchr ime= ted-CN, Tim	ry, nent 42S 0.078 af, e Span= 0. n ry, nent 43S 0.089 af,	Depth= 5.3 00-72.00 hr : C.9 Depth= 5.3	s, dt= 0.05 hrs	

Page 97
i

6842-Post Prepared by {e								
HydroCAD® 10.1	0-3a s/n 0	3590 © 2020) HydroCAE) Software S	olutions L	LC		Page 9
Area (sf)	CN	Description						
2,144		Paved parki						
2,121 853		Paved parki Unconnecte						
696		Unconnecte						
96		Roofs, HSG		,e e e				
5,910		Weighted A						
5,910 1,549		100.00% Im 26.21% Und		rea				
1,545		20.21/0 0110	Johneolea					
Tc Lengt (min) (fee		Velocity (ft/sec)	Capacity (cfs)	Descriptio	n			
6.0				Direct En	try,			
		Summ	ary for S	Subcatch	ment 47	'S: C.13		
Runoff =	0.24 c	fs @ 12.09	ahrs Volu	ime=	0 020	af, Depth=	5 31"	
	0.240	13 @ 12.0		inic-	0.020	ai, Dopui-	0.01	
			CS, Weigh	ted-CN, Tir	ne Span=	= 0.00-72.00	hrs, dt= 0.05	5 hrs
			CS, Weigh	ted-CN, Tir	ne Span=	= 0.00-72.00	hrs, dt= 0.05	5 hrs
Type III 24-hr 2	5-yr Rainf	all=5.55"	CS, Weigh	ted-CN, Tir	ne Span=	= 0.00-72.00	hrs, dt= 0.08	5 hrs
	5-yr Rainf CN			-	ne Span=	= 0.00-72.00	hrs, dt= 0.05	5 hrs
Type III 24-hr 2 <u>Area (sf)</u> 1,832 155	5-yr Rainf <u>CN</u> 98 98	all=5.55" Description Paved parki Unconnecte	ng, HSG D)	ne Span=	= 0.00-72.00	hrs, dt= 0.0	5 hrs
Type III 24-hr 2 <u>Area (sf)</u> 1,832 155 1,987	5-yr Rainf CN 98 98 98	all=5.55" <u>Description</u> Paved parki <u>Unconnecte</u> Weighted A	ng, HSG D d pavemer verage) nt, HSG D	ne Span=	= 0.00-72.00	hrs, dt= 0.05	5 hrs
Type III 24-hr 2 <u>Area (sf)</u> 1,832 155 1,987 1,987	5-yr Rainf <u>CN</u> 98 98 98	all=5.55" <u>Description</u> Paved parki <u>Unconnecte</u> Weighted A 100.00% Im	ng, HSG D d pavemer verage pervious A) nt, HSG D	ne Span=	= 0.00-72.00	hrs, dt= 0.05	5 hrs
Type III 24-hr 2 <u>Area (sf)</u> 1,832 155 1,987	5-yr Rainf <u>CN</u> 98 98 98	all=5.55" <u>Description</u> Paved parki <u>Unconnecte</u> Weighted A	ng, HSG D d pavemer verage pervious A) nt, HSG D	ne Span=	= 0.00-72.00	hrs, dt= 0.05	5 hrs
Type III 24-hr 2 <u>Area (sf)</u> 1,832 155 1,987 1,987 1,987 155 Tc Lengt	5-yr Rainf <u>CN</u> 98 98 98 1 98	all=5.55" <u>Description</u> Paved parki <u>Unconnecte</u> Weighted A 100.00% Im 7.80% Uncc Velocity	ng, HSG D d pavemer verage pervious A onnected Capacity) nt, HSG D urea		= 0.00-72.00	hrs, dt= 0.05	5 hrs
Type III 24-hr 2 <u>Area (sf)</u> 1,832 155 1,987 1,987 1,987 155 Tc Lengt (min) (fee	5-yr Rainf <u>CN</u> 98 98 98 1 98	all=5.55" <u>Description</u> Paved parki <u>Unconnecte</u> Weighted A 100.00% Im 7.80% Uncc Velocity	ng, HSG D d pavemer verage pervious A onnected) nt, HSG D vrea Descriptic	'n	= 0.00-72.00	hrs, dt= 0.05	5 hrs
Type III 24-hr 2 <u>Area (sf)</u> 1,832 155 1,987 1,987 1,987 155 Tc Lengt	5-yr Rainf <u>CN</u> 98 98 98 1 98	all=5.55" <u>Description</u> Paved parki <u>Unconnecte</u> Weighted A 100.00% Im 7.80% Uncc Velocity	ng, HSG D d pavemer verage pervious A onnected Capacity) nt, HSG D urea	'n	= 0.00-72.00	hrs, dt= 0.05	5 hrs
Type III 24-hr 2 <u>Area (sf)</u> 1,832 155 1,987 1,987 1,987 155 Tc Lengt (min) (fee	5-yr Rainf <u>CN</u> 98 98 98 1 98	all=5.55" Description Paved parki Jnconnecte Weighted A 100.00% Im 7.80% Uncc Velocity (ft/sec)	ng, HSG D d pavemer verage pervious A onnected Capacity (cfs)) nt, HSG D vrea Descriptic	n try,		hrs, dt= 0.05	5 hrs
Type III 24-hr 2 Area (sf) 1,832 155 1,987 1,987 1,987 155 Tc Lengt (min) (fee 6.0	5-yr Rainf 98 98 98 98 98 1000000000000000000000000000000000000	all=5.55" Description Paved parki Jnconnecte Weighted A 100.00% Im 7.80% Uncc Velocity (ft/sec)	ng, HSG D d pavemer verage pervious A onnected Capacity (cfs) nary for S) ht, HSG D vrea Descriptic Direct En Subcatchi	n try, ment 48			5 hrs
1,832 155 1,987 155 Tc Lengt (min) (fee 6.0	5-yr Rainf <u>CN</u> 98 98 98 98 0 0.23 c	all=5.55" <u>Description</u> Paved parki <u>Unconnecte</u> Weighted A 100.00% Im 7.80% Uncc Velocity (ft/sec) Summ fs @ 12.09	ng, HSG D dd pavemer verage ipervious A onnected Capacity (cfs) hary for S) ht, HSG D urea Descriptic Direct En Subcatchu	n try, nent 48 0.019	9 S: C.14 af, Depth=	5.31"	
Type III 24-hr 2 <u>Area (sf)</u> 1,832 1,987 1,987 1,987 1,987 155 Tc Lengt (min) (fee 6.0 Runoff = Runoff by SCS	5-yr Rainf <u>CN</u> 98 98 98 0 Slope) (ft/ft) 0.23 c TR-20 mei	all=5.55" <u>Description</u> Paved parki <u>Unconnecte</u> Weighted A 100.00% Im 7.80% Uncc Velocity (ft/sec) Summ fs @ 12.09 thod, UH=S	ng, HSG D dd pavemer verage ipervious A onnected Capacity (cfs) hary for S) ht, HSG D urea Descriptic Direct En Subcatchi ime=	n try, nent 48 0.019	9 S: C.14 af, Depth=	5.31"	
Type III 24-hr 2 <u>Area (sf)</u> 1,832 155 1,987 1,987 1,987 155 Tc Lengt (min) (fee 6.0 Runoff = Runoff by SCS Type III 24-hr 2	5-yr Rainf <u>CN</u> 98 98 98 98 0.23 c 1R-20 mel 5-yr Rainf	all=5.55" <u>Description</u> Paved parki <u>Unconnecte</u> Weighted A 100.00% Im 7.80% Uncc <u>Velocity</u> (ft/sec) Summ fs @ 12.09 thod, UH=S all=5.55"	ng, HSG D dd pavemer verage ipervious A onnected Capacity (cfs) hary for S) ht, HSG D urea Descriptic Direct En Subcatchi ime=	n try, nent 48 0.019	9 S: C.14 af, Depth=	5.31"	
Type III 24-hr 2 <u>Area (sf)</u> 1,832 1,987 1,987 1,987 155 Tc Lengt (min) (fee 6.0 Runoff = Runoff by SCS Type III 24-hr 2 <u>Area (sf)</u>	5-yr Rainf 98 98 98 98 98 98 98 0.23 c 0.23 c 1R-20 mei 5-yr Rainf CN	all=5.55" <u>Description</u> Paved parki <u>Unconnecte</u> Weighted A 100.00% Im 7.80% Uncc Velocity (ft/sec) Summ fs @ 12.09 thod, UH=S all=5.55" <u>Description</u>	ng, HSG D d pavemer verage pervious A onnected Capacity (cfs) eary for S 9 hrs, Volu CS, Weigh) nt, HSG D Descriptic Direct En Subcatchi ime= ted-CN, Tir	n try, nent 48 0.019	9 S: C.14 af, Depth=	5.31"	
Type III 24-hr 2 <u>Area (sf)</u> 1,832 155 1,987 1,987 1,987 155 Tc Lengt (min) (fee 6.0 Runoff = Runoff by SCS Type III 24-hr 2	5-yr Rainf 98 98 98 98 98 0.23 c 0.23 c 1R-20 mel 5-yr Rainf 5-yr Rainf 98	all=5.55" <u>Description</u> Paved parki <u>Unconnecte</u> Weighted A 100.00% Im 7.80% Uncc <u>Velocity</u> (ft/sec) Summ fs @ 12.09 thod, UH=S all=5.55"	ng, HSG D d pavemer verage pervious A onnected Capacity (cfs) hary for S D hrs, Volu CS, Weigh ng, HSG D) ht, HSG D urea Descriptic Direct En Subcatchu ume= ted-CN, Tir	n try, nent 48 0.019	9 S: C.14 af, Depth=	5.31"	
Type III 24-hr 2 <u>Area (sf)</u> 1,832 1,987 1,987 1,987 155 Tc Lengt (min) (fee 6.0 Runoff = Runoff sy SCS Type III 24-hr 2 <u>Area (sf)</u> 1,744	5-yr Rainf <u>CN</u> 98 98 98 98 0.23 c 1R-20 mei 5-yr Rainf <u>CN</u> 98 98	all=5.55" <u>Description</u> Paved parki <u>Unconnecte</u> Weighted A 100.00% Im 7.80% Uncc Velocity (ft/sec) Summ fs @ 12.09 thod, UH=S all=5.55" <u>Description</u> Paved parki	ng, HSG D d pavemer verage pervious A onnected Capacity (cfs) hary for S 0 hrs, Volu CS, Weigh) ht, HSG D urea Descriptic Direct En Subcatchu ume= ted-CN, Tir	n try, nent 48 0.019	9 S: C.14 af, Depth=	5.31"	
Type III 24-hr 2 <u>Area (sf)</u> 1,832 155 1,987 1,987 1,987 155 Tc Lengt (min) (fee 6.0 Runoff = Runoff by SCS Type III 24-hr 2 <u>Area (sf)</u> 1,744 141	5-yr Rainf 98 98 98 98 98 98 0.23 c 0.23 c 1R-20 met 5-yr Rainf 5-yr Rainf 98 98 98	all=5.55" Description Paved parki Unconnecte Weighted A 100.00% Im 7.80% Unco Velocity (ft/sec) Summ fs @ 12.09 thod, UH=S all=5.55" Description Paved parki Unconnecte	ng, HSG D d pavemer verage pervious A onnected Capacity (cfs) hary for S hrs, Volu CS, Weigh ng, HSG D d pavemer verage pervious A	Descriptic Descriptic Direct En Subcatchu ume= ted-CN, Tir	n try, nent 48 0.019	9 S: C.14 af, Depth=	5.31"	

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-yr Rainfall=5.55"

IC (min)	Length (feet)	Slop (ft/f		ocity /sec)	Capaci (cf		Descript	ion			
6.0	(leet)	(101	<u>.) (10</u>	(Sec)	(0)	/	Direct E	ntry	',		
			S	umm	nary for	r Sı	ubcatch	nme	ent 49S: C.15		
Runoff	=	0.42	cfs @	12.0	9 hrs, V	olun	ne=	(0.035 af,Depth=	5.31"	
	y SCS TF 24-hr 25-				CS, Wei	ghte	ed-CN, T	ime	Span= 0.00-72.00) hrs, dt= 0.05 hrs	\$
A	rea (sf)	CN	Descr								
	3,220 267	98 98			ing, HSO d paven		, HSG D				
	3,487 3,487 267	98	Weigh 100.00	nted A 0% Im	verage pervious onnected	s Are					
Tc (min)	Length (feet)	Slop (ft/f		ocity /sec)	Capaci (cf		Descript	ion			
6.0							Direct E	ntry	',		
			s	umm	nary for	r Sı	ubcatch	nme	ent 50S: C.16		
Runoff	=	0.43	cfe @	12.0	9 hrs, V	olun	no-	(0.036 af, Depth=	5 31"	
			0						, ,		_
	24-hr 25-				CS, Wei	gnie	a-Cin, i	ime	Span= 0.00-72.00) hrs, at= 0.05 hrs	5
А	rea (sf)	CN	Descr	iption							
	3,238 270	98 98			ing, HSC		, HSG D				
	3,508	98			verage	lent	., по б D				
	3,508 270				pervious		ea				
Tc (min)	Length (feet)	Slop (ft/f		ocity /sec)	Capaci (cf		Descript	ion			
6.0	()	(121)	<u>y (</u>)	(2.		Direct E	ntry	',		
			ç	Sumr	narv fo	r S	ubcatc	hm	ent 51S: D.1		
					-						
Runoff	=	11.60	cfs @	12.3	0 hrs, V	olun	ne=		1.318 af, Depth=	1.71"	
									Span= 0.00-72.00		

6842-Post	Type III 24-hr 25-yr Rain	nfall=5.55"
	ter your company name here} 3a s/n 03590 © 2020 HydroCAD Software Solutions LLC	Page 100
-		<u>1 ugo 100</u>
Area (sf) 1.527	CN Description 98 Unconnected pavement, HSG A	
182,934	68 >75% Grass cover, Good, HSG A	
518	79 >75% Grass cover, Good, HSG B	
51,440 160,796	 89 >75% Grass cover, Good, HSG D 43 Woods, Good, HSG A 	
5,106	65 Woods, Good, HSG B	
450	82 Woods, Good, HSG D	
402,771	61 Weighted Average	
401,244 1,527	99.62% Pervious Area 0.38% Impervious Area	
1,527	100.00% Unconnected	
Tc Length (min) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)	
20.0	Direct Entry,	
	Summary for Subcatchment 52S: B.9	
	•	
Runoff =	1.72 cfs @ 12.09 hrs, Volume= 0.133 af, Depth= 4.63"	
Runoff by SCS TR Type III 24-hr 25-	R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 h yr Rainfall=5.55"	irs
Area (sf)	CN Description	
10,973 2,895	 98 Paved parking, HSG A 68 >75% Grass cover, Good, HSG A 	
1,150	98 Unconnected pavement, HSG A	
15,018	92 Weighted Average	
2,895	19.28% Pervious Area	
12,123 1,150	80.72% Impervious Area 9.49% Unconnected	
1,150	3.43 /0 Onconnected	
Tc Length (min) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)	
6.0	Direct Entry,	
s	Summary for Pond 4P: Constructed Stormwater Wetland #2	
nflow Area =	2.341 ac, 79.77% Impervious, Inflow Depth = 4.03" for 25-yr event	
nflow = Outflow =	9.06 cfs @ 12.09 hrs, Volume= 0.787 af	min
Dutflow = Primary =	1.78 cfs @ 12.57 hrs, Volume= 0.785 af, Atten= 80%, Lag= 28.3 1.78 cfs @ 12.57 hrs, Volume= 0.785 af	5 mm
	nd method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs 0' @ 12.57 hrs Surf.Area= 9,493 sf Storage= 17,488 cf	
	on time= 327.8 min calculated for 0.785 af (100% of inflow) et. time= 326.5 min (1,088.7 - 762.2)	

Page 10	lutions LLC	ydroCAD Software So	© 2020 H	s/n 03590	D® 10.10-3a	пушоса
	ı	Storage Description	Storage	t Avail.	Inver	Volume
below (Recalc)	a (Irregular)Listed	<u>v</u> ,	1,125 cf		212.50	#1
Wet.Area	Cum.Store	Inc.Store	Perim.	urf.Area	on S	Elevatio
(sq-ft)	(cubic-feet)	(cubic-feet)	(feet)	(sq-ft)		(fee
6,500	0	0	322.0	6,500	50	212.5
8,737	11,187	11,187	362.0	8,459	00	214.0
14,695	31,125	19,938	453.0	11,559	00	216.0
		et Devices	ert Outle	Inv	Routing	Device
Rectangular Weir	th Broad-Crested	long x 12.0' bread	50' 20.0 '	215.5	Primary	#1
		d (feet) 0.20 0.40 (
		f. (English) 2.57 2.6				
r 2 End Contraction(s)	l Rectangular Weir			214.5	Device 3	#2
o= 0.000	a no hoodwall K	" Round Culvert 11.0' CPP, projecti		212.5	Primary	#3
.0186 '/' Cc= 0.900						
.0100 / 00- 0.000		.013, Flow Area= 1				
to weir flow at low heads				212.5	Device 3	#4
	.17 cfs @ 1.47 fps)	(Controls 0.00 cfs) fs potential flow) /eir (Weir Controls 1	of 5.86 c ngular W	d Rectang ses 1.77 cfs sted Recta	Ivert (Pass Sharp-Cre	-1=Br 3=Cu -2=
	.17 cfs @ 1.47 fps)	fs potential flow) /eir (Weir Controls 1 0.60 cfs @ 6.87 fps)	of 5.86 c ngular W Controls	d Rectang ses 1.77 cfs sted Recta	oad-Creste Ilvert (Pass Sharp-Cre	1=Br 3=Cu -2=
	.17 cfs @ 1.47 fps)	fs potential flow) /eir (Weir Controls 1	of 5.86 c ngular W Controls	d Rectang ses 1.77 cfs sted Recta	oad-Creste Ilvert (Pass Sharp-Cre	1=Br 3=Cu -2=
25-yr event	17 cfs @ 1.47 fps) : Wet Basin	rfs potential flow) /eir (Weir Controls 1 0.60 cfs @ 6.87 fps) nary for Pond 5P mpervious, Inflow D	s of 5.86 c ngular W Controls Summ 31.40% li	d Rectang ses 1.77 cfs sted Recta tte (Orifice 7.170 ac,	oad-Creste Ilvert (Pass Sharp-Cre Orifice/Gra	1=Br 3=Cu -2=
25-yr event	.17 cfs @ 1.47 fps) : Wet Basin epth = 3.37" for 2.013 af	fs potential flow) /eir (Weir Controls 1 0.60 cfs @ 6.87 fps) hary for Pond 5P mpervious, Inflow D rs, Volume=	s of 5.86 c ngular W Controls Summ 31.40% li 12.20 h	d Rectang ses 1.77 cfs sted Recta ite (Orifice 7.170 ac, 8.51 cfs @	oad-Creste Ilvert (Pass Sharp-Cre Orifice/Gra rea = = 1	1=Br 3=Cu 2= 4= Inflow A Inflow
	.17 cfs @ 1.47 fps) : Wet Basin epth = 3.37" for 2.013 af 2.013 af, Atten= 4	fs potential flow) feir (Weir Controls 1 0.60 cfs @ 6.87 fps) hary for Pond 5P mpervious, Inflow D rs, Volume= rs, Volume=	of 5.86 c ngular W Controls Summ 31.40% li 12.20 h 12.49 h	d Rectang ses 1.77 cfs sted Recta ite (Orifice 7.170 ac, 8.51 cfs @ 1.16 cfs @	oad-Creste Ilvert (Pass Sharp-Cre Orifice/Gra rea = = 1 = 1	Inflow A Inflow Outflow
25-yr event	.17 cfs @ 1.47 fps) : Wet Basin epth = 3.37" for 2.013 af 2.013 af, Atten= 4 2.013 af	fs potential flow) feir (Weir Controls 1 0.60 cfs @ 6.87 fps) hary for Pond 5P mpervious, Inflow D rs, Volume= rs, Volume= rs, Volume=	of 5.86 c ngular W Controls Summ 31.40% li 12.20 h 12.49 h	d Rectang ses 1.77 cfs sted Recta the (Orifice 7.170 ac, 8.51 cfs @ 1.16 cfs @	oad-Creste Ilvert (Pass sharp-Cre orifice/Gra rea = = 1 = 1 = 1	Inflow A Inflow A Inflow Outflow Primary
25-yr event	17 cfs @ 1.47 fps) : Wet Basin epth = 3.37" for 2.013 af 2.013 af, Atten= 4 2.013 af 0.05 hrs	fs potential flow) feir (Weir Controls 1 0.60 cfs @ 6.87 fps) hary for Pond 5P mpervious, Inflow D rs, Volume= rs, Volume=	of 5.86 c ngular W Controls Summ 31.40% li 12.20 h 12.49 h 12.49 h me Span	d Rectang ses 1.77 cfs sted Recta tte (Orifice 7.170 ac, 8.51 cfs @ 1.16 cfs @ method, Ti	oad-Creste Ilvert (Pass Sharp-Cre orifice/Gra rea = = 1 = 1 = 1 by Stor-Ind	Inflow A Inflow A Inflow Outflow Primary Routing
25-yr event	17 cfs @ 1.47 fps) : Wet Basin epth = 3.37" for 2.013 af 2.013 af, Atten= 4 2.013 af : 0.05 hrs rage= 16,366 cf	rs potential flow) feir (Weir Controls 1 0.60 cfs @ 6.87 fps) hary for Pond 5P mpervious, Inflow D rs, Volume= rs, Volume= rs, Volume= = 0.00-72.00 hrs, dt= trea= 13,984 sf Sto	s of 5.86 c ngular W Controls Summ 31.40% li 12.20 h 12.49 h 12.49 h me Span- rs Surf.A	d Rectang ses 1.77 cfs sted Recta tte (Orifice 7.170 ac, 8.51 cfs @ 1.16 cfs @ 1.16 cfs @ method, Ti @ 12.49 h	oad-Creste Ilvert (Pass =Sharp-Cre =Orifice/Gra = 1 = 1 = 1 by Stor-Ind ev= 215.42'	Inflow A Inflow A Inflow Outflow Primary Routing Peak Ele
25-yr event	17 cfs @ 1.47 fps) : Wet Basin epth = 3.37" for 2.013 af 2.013 af, Atten= 4 2.013 af : 0.05 hrs rage= 16,366 cf	fs potential flow) feir (Weir Controls 1 0.60 cfs @ 6.87 fps) hary for Pond 5P mpervious, Inflow D rs, Volume= rs, Volume= rs, Volume= = 0.00-72.00 hrs, dta vrea= 13,984 sf Sto ulated for 2.012 af (s of 5.86 c ngular W Controls Summ 31.40% li 12.20 h 12.49 h 12.49 h 12.49 h 12.49 h 8 min calc	d Rectang ies 1.77 cfs sted Recta ite (Orifice 7.170 ac, 8.51 cfs @ 1.16 cfs @ 1.16 cfs @ method, Ti @ 12.49 h time= 26.3	oad-Creste Ilvert (Pass =Sharp-Cre =Orifice/Gra = 1 = 1 = 1 by Stor-Ind ev= 215.42' www.detentior	Inflow A Inflow A Inflow Outflow Primary Routing Peak Ele Plug-Flc
25-yr event	17 cfs @ 1.47 fps) : Wet Basin epth = 3.37" for 2.013 af 2.013 af, Atten= 4 2.013 af : 0.05 hrs rage= 16,366 cf	rs potential flow) feir (Weir Controls 1 0.60 cfs @ 6.87 fps) hary for Pond 5P mpervious, Inflow D rs, Volume= rs, Volume= rs, Volume= = 0.00-72.00 hrs, dt= trea= 13,984 sf Sto	s of 5.86 c ngular W Controls Summ 31.40% li 12.20 h 12.49 h 12.49 h 12.49 h 12.49 h 8 min calc	d Rectang ies 1.77 cfs sted Recta ite (Orifice 7.170 ac, 8.51 cfs @ 1.16 cfs @ 1.16 cfs @ method, Ti @ 12.49 h time= 26.3	oad-Creste Ilvert (Pass =Sharp-Cre =Orifice/Gra rea = = 1 = 1 = 1 by Stor-Ind ev= 215.42' bw detentior of-Mass det	Inflow A Inflow A Inflow Outflow Outflow Primary Routing Peak Eld Plug-Flo Center-o
25-yr event 40%, Lag= 17.4 min	17 cfs @ 1.47 fps) : Wet Basin epth = 3.37" for 2.013 af 2.013 af, Atten= 4 2.013 af : 0.05 hrs rage= 16,366 cf 100% of inflow)	rs potential flow) feir (Weir Controls 1 0.60 cfs @ 6.87 fps) hary for Pond 5P mpervious, Inflow D rs, Volume= rs, Volume= e 0.00-72.00 hrs, dt= trea= 13,984 sf Store ulated for 2.012 af (6.3 - 809.8) Storage Description	controls Summ 31.40% II 12.20 h 12.40 h 12.49 h 12.49 h 12.49 h 12.49 h 12.49 s me Span: s Surf.A B min calc I min (83) Storage	d Rectang es 1.77 cfs sted Recta the (Orifice 7.170 ac, 8.51 cfs @ 1.16 cfs @ 1.16 cfs @ 1.16 cfs @ method, Ti @ 12.49 h time= 26.4 time= 26.4	oad-Creste Ilvert (Pass =Sharp-Cre =Orifice/Gra = 1 = 1 = 1 by Stor-Ind ev= 215.42' w detentior of-Mass det	Inflow A Inflow A Inflow Outflow Primary Routing Peak Ele Plug-Flc Center-o Volume
25-yr event 40%, Lag= 17.4 min	17 cfs @ 1.47 fps) : Wet Basin epth = 3.37" for 2.013 af 2.013 af, Atten= 4 2.013 af : 0.05 hrs rage= 16,366 cf 100% of inflow)	rs potential flow) feir (Weir Controls 1 0.60 cfs @ 6.87 fps) hary for Pond 5P mpervious, Inflow D rs, Volume= rs, Volume= e 0.00-72.00 hrs, dt= trea= 13,984 sf Store ulated for 2.012 af (6.3 - 809.8) Storage Description	controls Summ 31.40% In 12.20 h 12.49 h 12.49 h 12.49 s me Span- rs Surf. ⁴ 8 min calc 4 min (83	d Rectang es 1.77 cfs sted Recta the (Orifice 7.170 ac, 8.51 cfs @ 1.16 cfs @ 1.16 cfs @ 1.16 cfs @ method, Ti @ 12.49 h time= 26.4 time= 26.4	oad-Creste Ilvert (Pass =Sharp-Cre =Orifice/Gra rea = = 1 = 1 = 1 by Stor-Ind ev= 215.42' bw detentior of-Mass det	Inflow A Inflow A Inflow Outflow Outflow Primary Routing Peak Eld Plug-Flo Center-o
25-yr event 40%, Lag= 17.4 min	17 cfs @ 1.47 fps) : Wet Basin epth = 3.37" for 2.013 af 2.013 af, Atten= 4 2.013 af : 0.05 hrs rage= 16,366 cf 100% of inflow)	rs potential flow) feir (Weir Controls 1 0.60 cfs @ 6.87 fps) hary for Pond 5P mpervious, Inflow D rs, Volume= rs, Volume= e 0.00-72.00 hrs, dt= trea= 13,984 sf Store ulated for 2.012 af (6.3 - 809.8) Storage Description	controls Summ 31.40% II 12.20 h 12.40 h 12.49 h 12.49 h 12.49 h 12.49 h 12.49 s me Span: s Surf.A B min calc I min (83) Storage	d Rectang es 1.77 cfs sted Recta the (Orifice 7.170 ac, 8.51 cfs @ 1.16 cfs @ 1.16 cfs @ 1.16 cfs @ method, Ti @ 12.49 h time= 26.4 time= 26.4	oad-Creste Ilvert (Pass =Sharp-Cre =Orifice/Gra = 1 = 1 = 1 by Stor-Ind ev= 215.42' bw detentior of-Mass det Inver 214.00	Inflow A Inflow A Inflow Outflow Primary Routing Peak Ele Plug-Flc Center-o Volume
25-yr event 40%, Lag= 17.4 min below (Recalc) Wet.Area (sq-ft)	17 cfs @ 1.47 fps) : Wet Basin epth = 3.37" for 2.013 af 2.013 af, Atten= 4 2.013 af : 0.05 hrs rage= 16,366 cf 100% of inflow) a (Irregular)Listed	fs potential flow) feir (Weir Controls 1 0.60 cfs @ 6.87 fps) hary for Pond 5P mpervious, Inflow D rs, Volume= rs, Volume= = 0.00-72.00 hrs, dt= trea= 13,984 sf Stor ulated for 2.012 af (6.3 - 809.8) <u>Storage Description</u> Custom Stage Da	c of 5.86 c ngular W Controls Summ 31.40% li 12.20 h 12.49 h 12.49 h 12.49 h me Span- rs Surf.A 8 min calc 4 min (83 <u>Storage</u> 3,930 cf	d Rectang ies 1.77 cfs sted Recta ite (Orifice 7.170 ac, 8.51 cfs @ 1.16 cfs @ 1.16 cfs @ 1.16 cfs @ 1.16 cfs @ time= 26.3 time= 26.4 time= 26.4 time= 26.4 time= 26.4 time= 26.4 time= 26.4	oad-Creste Ilvert (Pass =Sharp-Cre =Orifice/Gra = 1 = 1 = 1 by Stor-Ind ev= 215.42' bw detentior of-Mass det Inver 214.00 bn S	Inflow A Inflow A Inflow Outflow Primary Routing Peak Eld Plug-Flc Center-c Volume #1
25-yr event 40%, Lag= 17.4 min below (Recalc) Wet.Area (sq-ft) 9,189	17 cfs @ 1.47 fps) : Wet Basin epth = 3.37" for 2.013 af 2.013 af, Atten= 4 2.013 af : 0.05 hrs rage= 16,366 cf 100% of inflow) : a (Irregular)Listed Cum.Store (cubic-feet) 0	rs potential flow) feir (Weir Controls 1 0.60 cfs @ 6.87 fps) hary for Pond 5P mpervious, Inflow D rs, Volume= rs, Volume= rs, Volume= e 0.00-72.00 hrs, dt= trea= 13,984 sf State ulated for 2.012 af (6.3 - 809.8) <u>Storage Description</u> Custom Stage Da Inc.Store (cubic-feet) 0	i of 5.86 c ngular W Controls Summ 31.40% li 12.20 h 12.49 h 12.49 h 12.49 h 12.49 h 8 min calc 4 min (83 <u>Storage</u> 3,930 cf Perim. (feet) 420.0	d Rectang ies 1.77 cfs sted Recta ite (Orifice 7.170 ac, 8.51 cfs @ 1.16 cfs @ 1.16 cfs @ method, Ti @ 12.49 h time= 26.3 time= 26.4 time= 26.4 time= 26.4 time= 26.4 time= 26.4 time= 26.4 time= 26.4 time= 26.4 time= 26.4 time= 26.4 time= 26.4 time= 26.4 time= 26.4	oad-Creste Ilvert (Pass =Sharp-Cre =Orifice/Gra = 1 = 1 by Stor-Ind ev= 215.42' by detentior of-Mass det Inver 214.00 bn S et)	Inflow A Inflow A Inflow Outflow Primary Routing Peak Ele Plug-Flc Center-co <u>Volume</u> #1 Elevatic (fee 214.0
25-yr event 40%, Lag= 17.4 min below (Recalc) Wet.Area (sq-ft)	17 cfs @ 1.47 fps) : Wet Basin epth = 3.37" for 2.013 af 2.013 af, Atten= 4 2.013 af : 0.05 hrs rage= 16,366 cf 100% of inflow) h curn.gular)Listed Cum.Store (cubic-feet)	rs potential flow) feir (Weir Controls 1 0.60 cfs @ 6.87 fps) hary for Pond 5P mpervious, Inflow D rs, Volume= rs, Volume= rs, Volume= = 0.00-72.00 hrs, dt= trea= 13,984 sf Sto ulated for 2.012 af (6.3 - 809.8) <u>Storage Description</u> Custom Stage Da Inc.Store (cubic-feet)	i of 5.86 c ngular W Controls Summ 31.40% li 12.20 h 12.40 h 12.49 h 12.49 h 12.49 h 3.9 surf.4 8 min calc 4 min (83 <u>Storage</u> 3,930 cf Perim. (feet)	d Rectang les 1.77 cfs sted Recta ite (Orifice 7.170 ac, 8.51 cfs @ 1.16 cfs @ 1.16 cfs @ 1.16 cfs @ method, Ti @ 12.49 h time= 26.4 time= 26.4 time= 26.4	oad-Creste Ilvert (Pass =Sharp-Cre =Orifice/Gra = 1 = 1 = 1 by Stor-Ind ev= 215.42' by detention of-Mass det <u>Inver</u> 214.00 bon Set) 00	Inflow A Inflow A Inflow Outflow Primary Routing Peak Ele Plug-Flc Center-c Volume #1 Elevatic (fee

ydroC/		er your com a s/n 03590		roCAD Software So	olutions LLC	Page 102
Device	Routing	Inve	rt Outlet	Devices		
#1	Primary	213.4		Round Culvert		
	-				ing, no headwall, K	
						.0031 '/' Cc= 0.900
#2	Device 1	214.0		13, Flow Area= 3		
#2	Device I	214.0		eg x 4.0° long Sn 56 (C= 3.20)	arp-Crested Vee/T	rap weir
#3	Device 1	215.5			n Broad-Crested R	ectangular Weir
						20 1.40 1.60 1.80 2.00
				.00 3.50 4.00 4		
					53 2.69 2.68 2.67 .77 2.85 3.01 3.23	2.67 2.65 2.66 2.66 3
rimar	/ OutFlow	Max=11.15 c	ofs @ 12.49) hrs HW=215.42	?' (Free Discharge))
-1=Ci	, ulvert (Bar	rel Controls 1	11.15 cfs @) 4.43 fps)		
					of 24.25 cfs potentia	l flow)
<u> </u>	=Broad-Cre	ested Rectar	ngular Wei	r (Controls 0.00	cts)	
	S	ummary fo	or Pond 7	P: Constructe	d Stormwater W	/etland #1
nflow A	roo -	11 003 00 0	9 70% Imr		Depth = 3.11" for	25 vr ovopt
nflow					Jepui – 3.11 101	20-yi eveni
			12 IU DIS	Volume=	3 086 af	
				Volume= Volume=	3.086 af 3.085 af. Atten=	7%. Lag= 2.6 min
Outflow Primary	= :	23.73 cfs @ 23.73 cfs @	12.14 hrs,	Volume=		7%, Lag= 2.6 min
Outflow Primary	= :	23.73 cfs @ 23.73 cfs @	12.14 hrs, 12.14 hrs,	Volume= Volume=	3.085 af, Atten= 3.085 af	7%, Lag= 2.6 min
Outflow Primary Routing	= = by Stor-Inc	23.73 cfs @ 23.73 cfs @ 1 method, Tin	12.14 hrs, 12.14 hrs, ne Span= (Volume= Volume=).00-72.00 hrs, dt	3.085 af, Atten= 3.085 af = 0.05 hrs / 3	7%, Lag= 2.6 min
Outflow Primary Routing	= = by Stor-Inc	23.73 cfs @ 23.73 cfs @ 1 method, Tin	12.14 hrs, 12.14 hrs, ne Span= (Volume= Volume=	3.085 af, Atten= 3.085 af = 0.05 hrs / 3	7%, Lag= 2.6 min
Outflow Primary Routing Peak El	= 2 by Stor-Inc ev= 215.44	23.73 cfs @ 23.73 cfs @ d method, Tin ' @ 12.14 hrs	12.14 hrs, 12.14 hrs, ne Span= (s Surf.Are	Volume= Volume=).00-72.00 hrs, dt	3.085 af, Atten= 3.085 af = 0.05 hrs / 3 orage= 7,069 cf	7%, Lag= 2.6 min
Dutflow Primary Routing Peak El Plug-Flo	= 2 by Stor-Inc ev= 215.44	23.73 cfs @ 23.73 cfs @ d method, Tin ' @ 12.14 hrs	12.14 hrs, 12.14 hrs, ne Span= 0 s Surf.Are min calcula	Volume= Volume= 0.00-72.00 hrs, dt a= 12,410 sf St ated for 3.083 af (3.085 af, Atten= 3.085 af = 0.05 hrs / 3 orage= 7,069 cf	7%, Lag= 2.6 min
Outflow Primary Routing Peak El Plug-Flo Center-	= by Stor-Inc ev= 215.44 by detentio of-Mass de	23.73 cfs @ 23.73 cfs @ 1 method, Tin ' @ 12.14 hr: n time= 26.9 t. time= 27.9	12.14 hrs, 12.14 hrs, ne Span= 0 s Surf.Are min calcula min (848.9	Volume= Volume= 0.00-72.00 hrs, dt ea= 12,410 sf St ated for 3.083 af (5 - 820.5)	3.085 af, Atten= 3.085 af = 0.05 hrs / 3 orage= 7,069 cf (100% of inflow)	7%, Lag= 2.6 min
Dutflow Primary Routing Peak El Plug-Flo Center-i	= by Stor-Inc ev= 215.44 by detentio of-Mass de	23.73 cfs @ 23.73 cfs @ 4 method, Tin • @ 12.14 hr n time= 26.9 t. time= 27.9 rt Avail.5	12.14 hrs, 12.14 hrs, ne Span= (s Surf.Are min calcula min (848.9 Storage S	Volume= Volume= 0.00-72.00 hrs, dt a= 12,410 sf St ated for 3.083 af (5 - 820.5) torage Descriptio	3.085 af, Atten= 3.085 af = 0.05 hrs / 3 orage= 7,069 cf (100% of inflow)	
Dutflow Primary Routing Peak El Plug-Flo Center-f <u>/olume</u> #1	= by Stor-Inc ev= 215.44 pw detentio of-Mass de <u>Inve</u> 214.80	23.73 cfs @ 23.73 cfs @ 1 method, Tin ' @ 12.14 hr: n time= 26.9 t. time= 27.9 rt <u>Avail.S</u> 0' 14	12.14 hrs, 12.14 hrs, ne Span= C s Surf.Are min calcula min (848.5 Storage S ,759 cf C	Volume= Volume= 0.00-72.00 hrs, dt a= 12,410 sf St ated for 3.083 af (5 - 820.5) torage Descriptio custom Stage Da	3.085 af, Atten= 3.085 af = 0.05 hrs / 3 orage= 7,069 cf 100% of inflow) n ta (Irregular)Listed	below (Recalc)
Dutflow Primary Routing Peak El Plug-Flo Center-f <u>/olume</u> #1	= by Stor-Inc ev= 215.44 ow detentio of-Mass de <u>Inve</u> 214.80 on	23.73 cfs @ 23.73 cfs @ 4 method, Tin • @ 12.14 hr n time= 26.9 t. time= 27.9 rt Avail.5	12.14 hrs, 12.14 hrs, ne Span= (s Surf.Are min calcula min (848.9 Storage S	Volume= Volume= 0.00-72.00 hrs, dt a= 12,410 sf St ated for 3.083 af (5 - 820.5) torage Descriptio	3.085 af, Atten= 3.085 af = 0.05 hrs / 3 orage= 7,069 cf (100% of inflow) n	
Outflow Primary Peak El Plug-Flo Center-i <u>Volume</u> #1 Elevatio	= by Stor-Inc ev= 215.44 bw detentio of-Mass de <u>Inve</u> 214.8 on et)	23.73 cfs @ 23.73 cfs @ 1 method, Tir (@ 12.14 hr: n time= 26.9 t. time= 27.9 rt <u>Avail.5</u> 0' 14 Surf.Area	12.14 hrs, 12.14 hrs, ne Span= C s Surf.Are min calcula min (848.9 <u>Storage S</u> ,759 cf C Perim.	Volume= Volume= 0.00-72.00 hrs, dt a= 12,410 sf St ated for 3.083 af (5 - 820.5) (torage Descriptio custom Stage Da Inc.Store	3.085 af, Atten= 3.085 af = 0.05 hrs / 3 orage= 7,069 cf (100% of inflow) n ta (Irregular)Listed Cum.Store	below (Recalc) Wet.Area
Outflow Primary Peak El Plug-Flo Center-i <u>Volume</u> #1 Elevatio (feo	= by Stor-Inc ev= 215.44 bw detentio of-Mass de <u>Inve</u> 214.80 on et) 80	23.73 cfs @ 23.73 cfs @ 1 method, Tir (@ 12.14 hr: n time= 26.9 t. time= 27.9 rt <u>Avail.S</u> 0' 14 Surf.Area (sq-ft)	12.14 hrs, 12.14 hrs, ne Span= 0 s Surf.Are min calcula min (848.9 <u>Storage S</u> ,759 cf C Perim. (feet)	Volume= Volume= 0.00-72.00 hrs, dt a= 12,410 sf St ated for 3.083 af (5 - 820.5) (torage Descriptio (torage Descriptio (torage Descriptio (torage Descriptio) (torage Descriptio) (torage Descriptio) (torage Descriptio) (torage Descriptio) (torage Descriptio) (torage Descriptio) (torage Descriptio) (torage Descriptio)	3.085 af, Atten= 3.085 af = 0.05 hrs / 3 orage= 7,069 cf (100% of inflow) <u>n</u> ta (Irregular)Listed Cum.Store (cubic-feet)	below (Recalc) Wet.Area (sq-ft)
Outflow Primary Routing Peak El Plug-Flc Center-i #1 Elevatio (feo 214.i	= by Stor-Inc ev= 215.44 by detentio of-Mass de 214.80 on et) 80 00	23.73 cfs @ 23.73 cfs @ d method, Tin ' @ 12.14 hrs n time= 26.9 t. time= 27.9 t. time= 27.9 rt <u>Avail.5</u> 0' 14 Surf.Area <u>(sq-ft)</u> 9,939 10,413	12.14 hrs, 12.14 hrs, ne Span= 0 s Surf.Are min calcula min (848.9 <u>Storage S</u> ,759 cf C Perim. (feet) 766.0	Volume= Volume= 0.00-72.00 hrs, dt a= 12,410 sf St ated for 3.083 af (5 - 820.5) torage Descriptio custom Stage Da Inc.Store (cubic-feet) 0	3.085 af, Atten= 3.085 af = 0.05 hrs / 3 orage= 7,069 cf (100% of inflow) n ta (Irregular)Listed Cum.Store (cubic-feet) 0	below (Recalc) Wet.Area (sq-ft) 9,939
Outflow Primary Routing Peak El Plug-Flc Center #1 Elevatio (fer 214.i 215.i	= by Stor-Inc ev= 215.44 bw detentio of-Mass de <u>Inve</u> 214.80 on et) 80 00 00	23.73 cfs @ 23.73 cfs @ 1 method, Tin ' @ 12.14 hr: n time= 26.9 t. time= 27.9 rt <u>Avail.5</u> 0' 14 Surf.Area (sq-ft) 9,939 10,413 15,185	12.14 hrs, 12.14 hrs, ne Span= (s Surf.Are min calcula min (848.5 <u>Storage S</u> ,759 cf C Perim. (feet) 766.0 771.0	Volume= Volume= 0.00-72.00 hrs, dt a= 12,410 sf St ated for 3.083 af (5 - 820.5) (torage Descriptio (torage Descriptio (cubic-feet) 0 2,035 12,724	3.085 af, Atten= 3.085 af = 0.05 hrs / 3 orage= 7,069 cf (100% of inflow) n ta (Irregular)Listed Cum.Store (cubic-feet) 0 2,035	below (Recalc) Wet.Area (sq-ft) 9,939 10,570
Outflow Primary Peak El Plug-Fld Center-f #1 Elevatio (fer 215.) 216.1	= by Stor-Inc ev= 215.44 bw detentio of-Mass de <u>Inve</u> 214.80 on et) 80 00 00	23.73 cfs @ 23.73 cfs @ 1 method, Tin ' @ 12.14 hr: n time= 26.9 t. time= 27.9 rt <u>Avail.5</u> 0' 14 Surf.Area (sq-ft) 9,939 10,413 15,185	12.14 hrs, 12.14 hrs, ne Span= (s Surf.Are min calcula min (848.5 <u>Storage S</u> ,759 cf C Perim. (feet) 766.0 771.0 1,210.0 rt Outlet 1 0' 40.0' lo	Volume= Volume= 0.00-72.00 hrs, dt a= 12,410 sf St ated for 3.083 af (5 - 820.5) torage Descriptio custom Stage Da Inc.Store (cubic-feet) 0 2,035 12,724 Devices ong x 10.0' brea	3.085 af, Atten= 3.085 af = 0.05 hrs / 3 orage= 7,069 cf (100% of inflow) n ta (Irregular)Listed Cum.Store (cubic-feet) 0 2,035 14,759 dth Broad-Crested	below (Recalc) Wet.Area (sq-ft) 9,939 10,570 79,782 Rectangular Weir
Outflow Primary Routing Peak El Plug-Flc Center-d #1 Elevatio (fer 214.; 215.] 216.] Device	= by Stor-Ind ev= 215.44 bw detentio of-Mass de <u>Inve</u> 214.80 on et) 80 00 00 Routing	23.73 cfs @ 23.73 cfs @ 1 method, Tir (@ 12.14 hr: n time= 26.9 t. time= 27.9 rt Avail.5 0' 14 Surf.Area (sq-ft) 9,939 10,413 15,185	12.14 hrs, 12.14 hrs, 12.14 hrs, ne Span= 0 s Surf.Are min calcula min (848.5 <u>Storage S</u> ,759 cf C Perim. (feet) 766.0 771.0 1,210.0 rt Outlet I 0' 40.0' lo Head (Volume= Volume= 0.00-72.00 hrs, dt a= 12,410 sf St ated for 3.083 af (5 - 820.5) (torage Descriptio custom Stage Da Inc.Store (cubic-feet) 0 2,035 12,724 Devices ong x 10.0' brea feet) 0.20 0.40	3.085 af, Atten= 3.085 af = 0.05 hrs / 3 orage= 7,069 cf (100% of inflow) n ta (Irregular)Listed Cum.Store (cubic-feet) 0 2,035 14,759 dth Broad-Crested 0.60 0.80 1.00 1.2	below (Recalc) Wet.Area (sq-ft) 9,939 10,570 79,782 Rectangular Weir 20 1.40 1.60
Dutflow Primary Routing Peak El Plug-Flc Center-d #1 Elevatii (fer 214.; 216.1 216.1 216.1 216.1 216.1 216.1 216.1 216.1 216.1	= by Stor-Inc ev= 215.44 bw detentio of-Mass de <u>Inve</u> 214.80 on et) 80 00 00 00 <u>Routing</u> Primary	23.73 cfs @ 23.73 cfs @ 4 method, Tin ' @ 12.14 hr: n time= 26.9 t. time= 27.9 rt Avail.5 0' 14 Surf.Area (sq-ft) 9,939 10,413 15,185 Inve 215.11	12.14 hrs, 12.14 hrs, 12.14 hrs, ne Span= 0 s Surf.Are min calcula min (848.5 Storage S Storage S (759 cf C Perim. (feet) 766.0 771.0 1,210.0 rt Outlet 1 0' 40.0' Id Head (Coef. (Volume= Volume= 0.00-72.00 hrs, dt a= 12,410 sf St ated for 3.083 af (5 - 820.5) (torage Descriptio custom Stage Da Inc.Store (cubic-feet) 0 2,035 12,724 Devices ong x 10.0' brea feet) 0.20 0.40 English) 2.49 2.	3.085 af, Atten= 3.085 af = 0.05 hrs / 3 orage= 7,069 cf (100% of inflow) n ta (Irregular)Listed Cum.Store (cubic-feet) 0 2,035 14,759 dth Broad-Crested 0.60 0.80 1.00 1.2 56 2.70 2.69 2.68	below (Recalc) Wet.Area (sq-ft) 9,939 10,570 79,782 Rectangular Weir 20 1.40 1.60
Dutflow Primary Routing Peak El Plug-Flc Center-d #1 Elevatio (fer 214.; 215.] 216.] Device	= by Stor-Ind ev= 215.44 bw detentio of-Mass de <u>Inve</u> 214.80 on et) 80 00 00 Routing	23.73 cfs @ 23.73 cfs @ 1 method, Tir (@ 12.14 hr: n time= 26.9 t. time= 27.9 rt Avail.5 0' 14 Surf.Area (sq-ft) 9,939 10,413 15,185	12.14 hrs, 12.14 hrs, 12.14 hrs, ne Span= 0 s Surf.Are min calcula min (848.5 <u>Storage S</u> ,759 cf C Perim. (feet) 766.0 771.0 1,210.0 rt Outlet 0' 40.0' lo Head (Coef. (0' 12.0''	Volume= Volume= 0.00-72.00 hrs, dt a= 12,410 sf St ated for 3.083 af (5 - 820.5) torage Descriptio custom Stage Da Inc.Store (cubic-feet) 0 2,035 12,724 Devices Dag x 10.0' brea feet) 0.20 0.40 English) 2.49 2. Round Culvert X	3.085 af, Atten= 3.085 af = 0.05 hrs / 3 orage= 7,069 cf (100% of inflow) n ta (Irregular)Listed Cum.Store (cubic-feet) 0 2,035 14,759 dth Broad-Crested 0.60 0.80 1.00 1.2 56 2.70 2.69 2.68 3.00	below (Recalc) Wet.Area (sq-ft) 9,939 10,570 79,782 Rectangular Weir 20 1.40 1.60 2.69 2.67 2.64
Dutflow Primary Routing Peak El Plug-Flc Center-f #1 Elevati (fed 215.1 215.1 215.1 215.1 215.1	= by Stor-Inc ev= 215.44 bw detentio of-Mass de <u>Inve</u> 214.80 on et) 80 00 00 00 <u>Routing</u> Primary	23.73 cfs @ 23.73 cfs @ 4 method, Tin ' @ 12.14 hr: n time= 26.9 t. time= 27.9 rt Avail.5 0' 14 Surf.Area (sq-ft) 9,939 10,413 15,185 Inve 215.11	12.14 hrs, 12.14 hrs, 12.14 hrs, ne Span= C s Surf.Are min calcula min (848.5 Storage S ,759 cf C Perim. (feet) 766.0 771.0 1,210.0 rt Outlet I 0' 40.0' lo Head (Coef. (Coef. (L=25.0)	Volume= Volume= 0.00-72.00 hrs, dt a= 12,410 sf St ated for 3.083 af (5 - 820.5) itorage Descriptio custom Stage Da lnc.Store (cubic-feet) 0 2,035 12,724 Devices ong x 10.0' brea feet) 0.20 0.40 English 2.49 z X0' CPP, projectir	3.085 af, Atten= 3.085 af = 0.05 hrs / 3 orage= 7,069 cf (100% of inflow) n ta (Irregular)Listed Cum.Store (cubic-feet) 0 2,035 14,759 dth Broad-Crested 0.60 0.80 1.00 1.2 56 2.70 2.69 2.68 3.00	below (Recalc) Wet.Area (sq-ft) 9,939 10,570 79,782 Rectangular Weir 20 1.40 1.60 2.69 2.67 2.64

 Image: Second Crested Rectangular Weir (Weir Controls 20.19 cfs @ 1.48 fps)

 -2=Cuivert (Inlet Controls 3.43 cfs @ 2.15 fps)

			HydroCAD Software		Page 103
	5	ummary for F	ond 12P: STON	NE RECHARGE TR	ENCH
Inflow Ar Inflow Outflow Discarde Primary	= 2.1 = 2.5 ed = 0.1	409 ac,100.00% 7 cfs @ 12.09 8 cfs @ 12.20 7 cfs @ 12.20 1 cfs @ 12.20	hrs, Volume= hrs, Volume= hrs, Volume=	v Depth = 5.31" for 0.181 af 0.181 af, Atten= 0 0.156 af 0.025 af	
Peak Ele	ev= 221.01' @	12.20 hrs Sur	n= 0.00-72.00 hrs, Area= 2,427 sf S	Storage= 1,942 cf	
		ne= 75.0 min ca ne= 74.9 min (8	lculated for 0.181 a 21.3 - 746.3)	af (100% of inflow)	
Volume	Invert	Avail.Storage	Storage Descrip		
#1	219.00'	1,942 cl	3.00'W x 809.00 4,854 cf Overall)'L x 2.00'H Prismatoid x 40.0% Voids	1
Device	Routing		tlet Devices		
#1	Primary	He 2.5 Co	ad (feet) 0.20 0.40 i0 3.00 ef. (English) 2.69	eadth Broad-Crested I 0 0.60 0.80 1.00 1.20 2.72 2.75 2.85 2.98	0 1.40 1.60 1.80 2.00
			0 3.31 3.32		
#2	Discarded	219.00' 2.4	10 in/hr Exfiltratio	on over Surface area Idwater Elevation = 210	
		219.00' 2.4 Co	10 in/hr Exfiltration nductivity to Groun		.00'
Discardo 1 2=Ext Primary	ed OutFlow M filtration (Co OutFlow Maa	219.00' 2.4 Co flax=0.17 cfs @ ntrols 0.17 cfs) <=1.47 cfs @ 12	10 in/hr Exfiltratic nductivity to Groun 12.20 hrs HW=22 ⁻ .20 hrs HW=221.0	dwater Elevation = 210	.00'
Discardo 1 2=Ext Primary	ed OutFlow M filtration(Co OutFlow Maa bad-Crested F	219.00' 2.4 Co Max=0.17 cfs @ ntrols 0.17 cfs) <=1.47 cfs @ 12 Rectangular We	10 in/hr Exfiltratic nductivity to Groun 12.20 hrs HW=22 .20 hrs HW=221.0 ir (Weir Controls 1	dwater Elevation = 210 1.01' (Free Discharge) 01' (Free Discharge)	.00'
Discardo 2=Ext Primary 1=Bro Inflow Ar Inflow Outflow Discarde	ed OutFlow M filtration (Co OutFlow Maa coad-Crested F Si ea = 0.4 = 2.1 = 2.5 d = 0.1	219.00' 2.4 Co flax=0.17 cfs @ ntrols 0.17 cfs) x=1.47 cfs @ 12 Rectangular We ummary for F	10 in/hr Exfiltratic nductivity to Groun 12.20 hrs HW=221.0 20 hrs HW=200 hrs HW=20	dwater Elevation = 210 1.01' (Free Discharge) 01' (Free Discharge) .47 cfs @ 0.24 fps)	.00' ENCH 25-yr event
Discarde -2=Ext Primary -1=Bro Inflow Ar Inflow Outflow Discarde Primary Routing	ed OutFlow Ma filtration (Co OutFlow Maz oad-Crested F = 2.1 = 2.5 od = 0.1 = 2.4 by Stor-Ind me	219.00' 2.4 Co Max=0.17 cfs @ ntrols 0.17 cfs @ (=1.47 cfs @ 12 Rectangular We ummary for F 409 ac,100.00% 7 cfs @ 12.09 8 cfs @ 12.20 7 cfs @ 12.20 1 cfs @ 12.20 ethod, Time Spa	10 in/hr Exfiltratic nductivity to Groun 12.20 hrs HW=221.0 20 hrs HW=200 hrs HW=20	Adwater Elevation = 210 1.01' (Free Discharge) .47 cfs @ 0.24 fps) NE RECHARGE TR NE RECHARGE TR NE RECHARGE TR NE RECHARGE TR 0.181 af 0.181 af, Atten= 0 0.156 af 0.025 af dt= 0.05 hrs	.00' ENCH 25-yr event
Discarde Primary Primary 1=Bro Inflow Ar Inflow Outflow Outflow Discarde Primary Routing Peak Ele Plug-Flo	ed OutFlow Ma filtration (Co OutFlow Mazo bad-Crested F Solution State = 2.1 = 2.5 = 2.4 by Stor-Ind me = 221.01' @ w detention tin	219.00' 2.4 Co Max=0.17 cfs @ ntrols 0.17 cfs) (=1.47 cfs @ 12 Rectangular Wa ummary for F 409 ac,100.00% 7 cfs @ 12.20 8 cfs @ 12.20 1 cfs @ 12.20 1 cfs @ 12.20 ethod, Time Spa 12.20 hrs Surf	10 in/hr Exfiltratic nductivity to Groun 12.20 hrs HW=221.0 ir (Weir Controls 1 Pond 17P: STON Impervious, Inflow hrs, Volume= hrs, Volume= hrs, Volume= hrs, Volume= n= 0.00-72.00 hrs, Area= 2,427 sf S lculated for 0.181 a	adwater Elevation = 210 1.01' (Free Discharge) .47 cfs @ 0.24 fps) NE RECHARGE TR v Depth = 5.31" for 0.181 af 0.181 af, Atten= 0 0.156 af 0.025 af dt= 0.05 hrs Storage= 1,942 cf	.00' ENCH 25-yr event
Discarde Primary Primary 1=Bro Inflow Ar Inflow Outflow Outflow Discarde Primary Routing Peak Ele Plug-Flo	ed OutFlow Ma filtration (Co OutFlow Mazo bad-Crested F Solution (Co Solution (C	219.00' 2.4 Co Max=0.17 cfs @ ntrols 0.17 cfs @ 12.20 Rectangular We ummary for F 409 ac,100.00% 7 cfs @ 12.09 8 cfs @ 12.20 9 cfs @ 12.20 1 cfs @ 12.20 1 cfs @ 12.20 ethod, Time Spa 12.20 hrs Surf me= 75.0 min ca me= 74.9 min (8	10 in/hr Exfiltratic nductivity to Groun 12.20 hrs HW=221.0 20 hrs HW=221.0 ir (Weir Controls 1 Pond 17P: STON Impervious, Inflow hrs, Volume= hrs, Volume= hrs, Volume= hrs, Volume= n= 0.00-72.00 hrs, Area= 2,427 sf S Iculated for 0.181 a 21.3 - 746.3) Storage Descrip	adwater Elevation = 210 1.01' (Free Discharge) .47 cfs @ 0.24 fps) NE RECHARGE TR v Depth = 5.31" for 0.181 af 0.184 af, Atten= 0 0.156 af 0.025 af dt= 0.05 hrs Storage= 1,942 cf af (100% of inflow)	.00' ENCH 25-yr event %, Lag= 6.8 min

<u>evice</u> #1	Routing	Invert				
#1				Devices		
	Primary	221.00'	Head 2.50 Coef.	long x 1.0' breadth Brc (feet) 0.20 0.40 0.60 0. 3.00 (English) 2.69 2.72 2.75 3.31 3.32	.80 1.00 1.20 1.4	0 1.60 1.80 2.00
#2	Discarded	219.00'	2.410	in/hr Exfiltration over South to Groundwater Electivity to Groundwater Electivity to Groundwater Election (1997)		
	ed OutFlow M filtration (Co			20 hrs HW=221.01' (Fre	ee Discharge)	
Primary	outFlow Max oad-Crested F	k=1.47 cfs @ Rectangula	12.20 r Weir (hrs HW=221.01' (Free Weir Controls 1.47 cfs @	Discharge) 0.24 fps)	
	S	ummary f	or Por	d 19P: STONE RECH	HARGE TRENC	н
Inflow A Inflow Outflow	= 2.1 = 2.5	7 cfs @ 12 8 cfs @ 12	2.09 hrs 2.20 hrs	, Volume= 0.181	l af I af, Atten= 0%, L	
Discarde Primary		7 cfs @ 12 1 cfs @ 12				
				0.00-72.00 hrs, dt= 0.05 h ea= 2,427 sf Storage= 1		
	w detention tin of-Mass det. tin			ated for 0.181 af (100% c 3 - 746.3)	of inflow)	
Volume	Invert			Storage Description		
#1	219.00'	1,94		3 .00'W x 809.00'L x 2.00' 4,854 cf Overall x 40.0%		
Device	Routing	Invert	Outlet	Devices		
#1	Primary	221.00'	Head 2.50		.80 1.00 1.20 1.4	0 1.60 1.80 2.00
#2	Discarded	219.00'	3.30	(English) 2.69 2.72 2.75 3.31 3.32 in/hr Exfiltration over S		3.20 3.28 3.31
			Condu	ctivity to Groundwater El	evation = 210.00'	
	ed OutFlow M filtration (Co			20 hrs HW=221.01' (Fre	ee Discharge)	
Primary	outFlow Max oad-Crested F	k=1.47 cfs (∂ Rectangula	12.20 r Weir (hrs HW=221.01' (Free Weir Controls 1.47 cfs @	Discharge) 0.24 fps)	

	6842-Post Type III 24-hr 25-yr Rainfall=5.55"
6842-Post Type III 24-hr 25-yr Rainfall=5.55" Prepared by {enter your company name here}	Prepared by {enter your company name here}
HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 105	HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 106
Summary for Pond 21P: CB-4	Device Routing Invert Outlet Devices #1 Primary 215.60' 12.0" Round Culvert
Inflow Area = 0.345 ac, 80.72% Impervious, Inflow Depth = 4.63" for 25-yr event Inflow = 1.72 cfs @ 12.09 hrs, Volume= 0.133 af Outflow = 1.72 cfs @ 12.09 hrs, Volume= 0.133 af, Atten= 0%, Lag= 0.0 min Primary = 1.72 cfs @ 12.09 hrs, Volume= 0.133 af	L= 27.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.60' / 215.40' S= 0.0074 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.39' @ 12.09 hrs	Primary OutFlow Max=1.52 cfs @ 12.09 hrs HW=216.39' (Free Discharge)
Flood Elev= 218.50'	Summary for Pond 24P: CB-2
Device Routing Invert Outlet Devices #1 Primary 215.50' 12.0" Round Culvert L= 37.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.50' / 215.30' S= 0.0054 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf Primary OutFlow Max=1.68 cfs @ 12.09 hrs HW=216.37' (Free Discharge)	Inflow Area = 0.392 ac, 95.72% Impervious, Inflow Depth = 5.20" for 25-yr event Inflow = 2.07 cfs @ 12.09 hrs, Volume= 0.170 af Outflow = 2.07 cfs @ 12.09 hrs, Volume= 0.170 af, Atten= 0%, Lag= 0.0 min Primary = 2.07 cfs @ 12.09 hrs, Volume= 0.170 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 217.17' @
[™] 1=Culvert (Barrel Controls 1.68 cfs @ 3.07 fps)	Flood Elev= 219.20'
Summary for Pond 22P: DMH-2 Inflow Area = 1.540 ac, 81.03% Impervious, Inflow Depth = 4.68" for 25-yr event Inflow = 7.70 cfs @ 12.09 hrs, Volume= 0.600 af Outflow = 7.70 cfs @ 12.09 hrs, Volume= 0.600 af, Atten= 0%, Lag= 0.0 min Primary = 7.70 cfs @ 12.09 hrs, Volume= 0.600 af	Device Routing Invert Outlet Devices #1 Primary 216.20' 12.0" Round Culvert L= 20.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.20' / 215.40' S= 0.0400 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 217.40' @ 12.09 hrs Flood Elev= 218.90'	Primary OutFlow Max=2.01 cfs @ 12.09 hrs HW=217.15' (Free Discharge)
Device Routing Invert Outlet Devices	
#1 Primary 215.30' 18.0" Round Culvert L= 101.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.30' / 214.80' S= 0.0050 '/' Cc= 0.900 n= 0.013, Flow Area= 1.77 sf	Inflow Area = 0.565 ac, 67.38% Impervious, Inflow Depth = 4.19" for 25-yr event Inflow = 2.64 cfs @ 12.09 hrs, Volume= 0.198 af Outflow = 2.64 cfs @ 12.09 hrs, Volume= 0.198 af, Atten= 0%, Lag= 0.0 min Primary = 2.64 cfs @ 12.09 hrs, Volume= 0.198 af
Primary OutFlow Max=7.44 cfs @ 12.09 hrs HW=217.33' (Free Discharge) —1=Culvert (Barrel Controls 7.44 cfs @ 4.21 fps)	Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 217.78' @ 12.09 hrs Flood Elev= 219.50'
Summary for Pond 23P: CB-1	Device Routing Invert Outlet Devices
Inflow Area = 0.307 ac, 83.76% Impervious, Inflow Depth = 4.74" for 25-yr event Inflow = 1.56 cfs @ 12.09 hrs, Volume= 0.121 af Outflow = 1.56 cfs @ 12.09 hrs, Volume= 0.121 af Primary = 1.56 cfs @ 12.09 hrs, Volume= 0.121 af	#1 Primary 216.50' 12.0" Round Culvert L= 38.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.50' / 215.40' S= 0.0289 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.41' @ 12.09 hrs Flood Elev= 218.60'	Primary OutFlow Max=2.58 cfs @ 12.09 hrs HW=217.74' (Free Discharge) -1=Culvert (Inlet Controls 2.58 cfs @ 3.28 fps)

6842-Post Type III 24-hr 25-yr Rainfall=5.55" Prepared by {enter your company name here} HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC	6842-Post Type III 24-hr 25-yr Rainfall=5.55" Prepared by {enter your company name here} HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 108
Summary for Pond 26P: DMH-1	Device Routing Invert Outlet Devices
Inflow Area = 1.264 ac, 80.14% Impervious, Inflow Depth = 4.64" for 25-yr event Inflow = 6.26 cfs @ 12.09 hrs, Volume = 0.488 af Outflow = 6.26 cfs @ 12.09 hrs, Volume = 0.488 af, Atten = 0%, Lag = 0.0 min Primary = 6.26 cfs @ 12.09 hrs, Volume = 0.488 af	#1 Primary 215.10' 12.0" Round Culvert L= 160.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.10' / 214.30' S= 0.0050 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.92' @ 12.09 hrs	Primary OutFlow Max=2.63 cfs @ 12.09 hrs HW=216.51' (Free Discharge)
Flood Elev= 218.90'	Summary for Pond 29P: CB-21
Device Routing Invert Outlet Devices #1 Primary 215.30' 18.0'' Round Culvert L= 56.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.30' / 214.80' S= 0.0089 '/' Cc= 0.900 n= 0.013, Flow Area= 1.77 sf	Inflow Area = 0.123 ac,100.00% Impervious, Inflow Depth = 5.31" for 25-yr event Inflow = 0.65 cfs @ 12.09 hrs, Volume= 0.054 af Outflow = 0.65 cfs @ 12.09 hrs, Volume= 0.054 af, Atten= 0%, Lag= 0.0 min Primary = 0.65 cfs @ 12.09 hrs, Volume= 0.054 af
Primary OutFlow Max=6.10 cfs @ 12.09 hrs HW=216.87' (Free Discharge)	Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.66' @ 12.09 hrs Flood Elev= 219.20'
Summary for Pond 27P: DCB-22	Device Routing Invert Outlet Devices
Inflow Area = 0.515 ac,100.00% Impervious, Inflow Depth = 5.31" for 25-yr event Inflow = 2.73 cfs @ 12.09 hrs, Volume= 0.228 af Outflow = 2.73 cfs @ 12.09 hrs, Volume= 0.228 af, Atten= 0%, Lag= 0.0 min Primary = 2.73 cfs @ 12.09 hrs, Volume= 0.228 af	#1 Primary 216.20' 12.0" Round Culvert L= 26.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.20' / 215.70' S= 0.0192 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.84' @ 12.09 hrs	Primary OutFlow Max=0.63 cfs @ 12.09 hrs HW=216.66' (Free Discharge) └─1=Culvert (Inlet Controls 0.63 cfs @ 1.81 fps)
Flood Elev= 218.50'	Summary for Pond 30P: DMH-15
Device Routing Invert Outlet Devices #1 Primary 215.50' 12.0" Round Culvert L= 50.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.50' / 215.20' S= 0.0060 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf	Inflow Area = 0.637 ac,100.00% Impervious, Inflow Depth = 5.31" for 25-yr event Inflow = 3.38 cfs @ 12.09 hrs, Volume= 0.282 af Outflow = 3.38 cfs @ 12.09 hrs, Volume= 0.282 af, Atten= 0%, Lag= 0.0 min Primary = 3.38 cfs @ 12.09 hrs, Volume= 0.282 af
Primary OutFlow Max=2.66 cfs @ 12.09 hrs HW=216.79' (Free Discharge) -1=Culvert (Inlet Controls 2.66 cfs @ 3.39 fps)	Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 215.34' @ 12.09 hrs Flood Elev= 219.80'
Summary for Pond 28P: DMH-16	Device Routing Invert Outlet Devices
Inflow Area = 0.515 ac,100.00% Impervious, Inflow Depth = 5.31" for 25-yr event Inflow = 2.73 cfs @ 12.09 hrs, Volume= 0.228 af Outflow = 2.73 cfs @ 12.09 hrs, Volume= 0.228 af, Atten= 0%, Lag= 0.0 min	#1 Primary 214.20' 15.0" Round Culvert L= 250.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 214.20' / 212.90' S= 0.0052 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf
Primary = 2.73 cfs @ 12.09 hrs, Volume= 0.228 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.58' @ 12.09 hrs Flood Elev= 218.70' Flood Elev= 218.70' Flood Elev= 218.70' Flood Elev= 218.70'	Primary OutFlow Max=3.30 cfs @ 12.09 hrs HW=215.32' (Free Discharge)

6842-Post Type III 24-hr 25-yr Rainfall=5.55" Prepared by {enter your company name here} HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 109	6842-Post Type III 24-hr 25-yr Rainfall=5.55" Prepared by {enter your company name here} HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 110
	HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 110 Device Routing Invert Outlet Devices
Summary for Pond 31P: DMH-14 Inflow Area = 1.468 ac, 97.47% Impervious, Inflow Depth = 5.22" for 25-yr event Inflow = 7.74 cfs @ 12.09 hrs, Volume= 0.639 af Outflow = 7.74 cfs @ 12.09 hrs, Volume= 0.639 af, Atten= 0%, Lag= 0.0 min Primary = 7.74 cfs @ 12.09 hrs, Volume= 0.639 af	Bender Roduing Invent Outlet Devices #1 Primary 215.60' 12.0" Round Culvert L= 180.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.60' / 214.70' S= 0.0050 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 214.90' @ 12.09 hrs	Primary OutFlow Max=2.58 cfs @ 12.09 hrs HW=216.96' (Free Discharge)
Flood Elev= 218.60'	Summary for Pond 34P: CB-23
Device Routing Invert Outlet Devices #1 Primary 212.80' 18.0" Round Culvert L= 61.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 212.80' / 212.50' S= 0.0049 '/' Cc= 0.900 n= 0.013, Flow Area= 1.77 sf	Inflow Area = 0.288 ac, 87.12% Impervious, Inflow Depth = 4.85" for 25-yr event Inflow = 1.48 cfs @ 12.09 hrs, Volume= 0.117 af Outflow = 1.48 cfs @ 12.09 hrs, Volume= 0.117 af, Atten= 0%, Lag= 0.0 min Primary = 1.48 cfs @ 12.09 hrs, Volume= 0.117 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Primary OutFlow Max=7.44 cfs @ 12.09 hrs HW=214.83' (Free Discharge) -1=Culvert (Barrel Controls 7.44 cfs @ 4.21 fps)	Peak Elev= 216.68' @ 12.09 hrs Flood Elev= 218.50'
Summary for Pond 32P: CB-20	Device Routing Invert Outlet Devices
Inflow Area = 0.318 ac,100.00% Impervious, Inflow Depth = 5.31" for 25-yr event Inflow = 1.69 cfs @ 12.09 hrs, Volume= 0.141 af Outflow = 1.69 cfs @ 12.09 hrs, Volume= 0.141 af, Atten= 0%, Lag= 0.0 min Primary = 1.69 cfs @ 12.09 hrs, Volume= 0.141 af	#1 Primary 215.90' 12.0" Round Culvert L= 28.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.90' / 215.70' S= 0.0071 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.32' @ 12.09 hrs	Primary OutFlow Max=1.44 cfs @ 12.09 hrs HW=216.67' (Free Discharge)
Flood Elev= 218.50'	Summary for Pond 35P: CB-24
Device Routing Invert Outlet Devices #1 Primary 215.50' 12.0'' Round Culvert L= 12.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.50' / 215.30' S= 0.0167 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf	Inflow Area = 0.224 ac,100.00% Impervious, Inflow Depth = 5.31" for 25-yr event Inflow = 1.19 cfs @ 12.09 hrs, Volume= 0.099 af Outflow = 1.19 cfs @ 12.09 hrs, Volume= 0.099 af, Atten= 0%, Lag= 0.0 min Primary = 1.19 cfs @ 12.09 hrs, Volume= 0.099 af
Primary OutFlow Max=1.64 cfs @ 12.09 hrs HW=216.31' (Free Discharge) -1=Culvert (Inlet Controls 1.64 cfs @ 2.42 fps)	Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.56' @ 12.09 hrs Flood Elev= 218.50'
Summary for Pond 33P: DMH-17	Device Routing Invert Outlet Devices
Inflow Area = 0.513 ac, 92.75% Impervious, Inflow Depth = 5.05" for 25-yr event Inflow = 2.67 cfs @ 12.09 hrs, Volume= 0.216 af Outflow = 2.67 cfs @ 12.09 hrs, Volume= 0.216 af, Atten= 0%, Lag= 0.0 min	#1 Primary 215.90' 12.0" Round Culvert L= 20.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.90' / 215.70' S= 0.0100 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Primary = 2.67 cfs @ 12.09 hrs, Volume= 0.216 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 217.04' @ 12.09 hrs Flood Elev= 218.80'	Primary OutFlow Max=1.16 cfs @ 12.09 hrs HW=216.55' (Free Discharge)

6842-Post Prepared by {enter your company name here} HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 111	6842-Post Type III 24-hr 25-yr Rainfall=5.55" Prepared by {enter your company name here} HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 112
Summary for Pond 36P: DMH-7Inflow Area = $0.323 ac, 100.00\%$ Impervious, Inflow Depth = $5.31"$ for 25-yr eventInflow = $1.71 cfs @$ 12.09 hrs, Volume= $0.143 af$ Outflow = $1.71 cfs @$ 12.09 hrs, Volume= $0.143 af$, Atten= 0%, Lag= 0.0 minPrimary = $1.71 cfs @$ 12.09 hrs, Volume= $0.143 af$ Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrsPeak Elev= 216.83' @ 12.09 hrsFlood Elev= 219.80'Device Routing Invert Outlet Devices#1Primary216.00'L= 220.0'CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.00' / 214.80'Sector Sector Sect	HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 112 Device Routing Invert Outlet Devices #1 Primary 232.20' 12.0" Round Culvert L= 15.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 232.20' / 231.70' S= 0.0333 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf Primary OutFlow Max=0.22 cfs @ 12.09 hrs HW=232.46' (Free Discharge) T=Culvert (Inlet Controls 0.22 cfs @ 1.37 fps) Summary for Pond 39P: CB-16 Inflow Area = 0.046 ac, 100.00% Impervious, Inflow Depth = 5.31" for 25-yr event Inflow = 0.24 cfs @ 12.09 hrs, Volume= 0.020 af Outflow = 0.24 cfs @ 12.09 hrs, Volume= 0.020 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 232.47' @ 12.09 hrs 0.02-72.00 hrs, dt= 0.05 hrs
Landy Cut low Max-1.07 cfs @ 12.09 his 100/2 (Nee Discharge)	Flood Elev= 236.20'
Summary for Pond 37P: DMH-10 Inflow Area = 0.446 ac,100.00% Impervious, Inflow Depth = 5.31" for 25-yr event Inflow = 2.36 cfs @ 12.09 hrs, Volume= 0.197 af Outflow = 2.36 cfs @ 12.09 hrs, Volume= 0.197 af, Atten= 0%, Lag= 0.0 min Primary = 2.36 cfs @ 12.09 hrs, Volume= 0.197 af	Device Routing Invert Outlet Devices #1 Primary 232.20' 12.0'' Round Culvert L= 15.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 232.20' / 231.70' S= 0.0333 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf Primary OutFlow Max=0.23 cfs @ 12.09 hrs HW=232.47' (Free Discharge)
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 218.99' @ 12.09 hrs Flood Elev= 222.20'	^T —1=Culvert (Inlet Controls 0.23 cfs @ 1.39 fps) Summary for Pond 52P: CB-17
Device Routing Invert Outlet Devices #1 Primary 218.10' 15.0" Round Culvert L= 122.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 218.10' / 214.50' S= 0.0295 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf Primary OutFlow Max=2.30 cfs @ 12.09 hrs HW=218.97' (Free Discharge)	Inflow Area = 0.081 ac,100.00% Impervious, Inflow Depth = 5.31" for 25-yr event Inflow = 0.43 cfs @ 12.09 hrs, Volume= 0.036 af Outflow = 0.43 cfs @ 12.09 hrs, Volume= 0.036 af, Atten= 0%, Lag= 0.0 min Primary = 0.43 cfs @ 12.09 hrs, Volume= 0.036 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 247.77" @ 12.09 hrs
←1=Culvert (Inlet Controls 2.30 cfs @ 2.51 fps)	Flood Elev= 251.40'
Summary for Pond 38P: CB-15	Device Routing Invert Outlet Devices #1 Primary 247.40' 12.0" Round Culvert
Inflow Area = 0.043 ac,100.00% Impervious, Inflow Depth = 5.31" for 25-yr event Inflow = 0.23 cfs @ 12.09 hrs, Volume= 0.019 af Outflow = 0.23 cfs @ 12.09 hrs, Volume= 0.019 af, Atten= 0%, Lag= 0.0 min Primary = 0.23 cfs @ 12.09 hrs, Volume= 0.019 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 232.46' @ 12.09 hrs Flood Elev= 236.20' 12.09 hrs	L= 18.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 247.40' / 246.50' S= 0.0500 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf Primary OutFlow Max=0.42 cfs @ 12.09 hrs HW=247.76' (Free Discharge) -1=Culvert (Inlet Controls 0.42 cfs @ 1.62 fps)

6842-Post Type III 24-hr 25-yr Rainfall=5.55" Prepared by {enter your company name here}	6842-Post Type III 24-hr 25-yr Rainfall=5.55" Prepared by {enter your company name here}
HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 113	HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 114
Summary for Pond 53P: CB-18	Device Routing Invert Outlet Devices
Inflow Area = 0.080 ac,100.00% Impervious, Inflow Depth = 5.31" for 25-yr event Inflow = 0.42 cfs @ 12.09 hrs, Volume= 0.035 af Outflow = 0.42 cfs @ 12.09 hrs, Volume= 0.035 af, Atten= 0%, Lag= 0.0 min Primary = 0.42 cfs @ 12.09 hrs, Volume= 0.035 af	#1 Primary 239.90' 12.0'' Round Culvert L= 110.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 239.90' / 231.70' S= 0.0745 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 247.77' @ 12.09 hrs	Primary OutFlow Max=0.83 cfs @ 12.09 hrs HW=240.43' (Free Discharge) ▲1=Culvert (Inlet Controls 0.83 cfs @ 1.96 fps)
Flood Elev= 251.40'	Summary for Pond 58P: CB-13
Device Routing Invert Outlet Devices #1 Primary 247.40' 12.0" Round Culvert L= 18.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 247.40' / 246.50' S= 0.0500 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf	Inflow Area = 0.060 ac,100.00% Impervious, Inflow Depth = 5.31" for 25-yr event Inflow = 0.32 cfs @ 12.09 hrs, Volume= 0.027 af Outflow = 0.32 cfs @ 12.09 hrs, Volume= 0.027 af, Atten= 0%, Lag= 0.0 min Primary = 0.32 cfs @ 12.09 hrs, Volume= 0.027 af
Primary OutFlow Max=0.41 cfs @ 12.09 hrs HW=247.76' (Free Discharge)	Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 219.22' @ 12.09 hrs Flood Elev= 221.90'
Summary for Pond 54P: DMH-13	Device Routing Invert Outlet Devices
Inflow Area = 0.161 ac,100.00% Impervious, Inflow Depth = 5.31" for 25-yr event Inflow = 0.85 cfs @ 12.09 hrs, Volume= 0.071 af Outflow = 0.85 cfs @ 12.09 hrs, Volume= 0.071 af, Atten= 0%, Lag= 0.0 min Primary = 0.85 cfs @ 12.09 hrs, Volume= 0.071 af	#1 Primary 218.90' 12.0'' Round Culvert L= 15.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 218.90' / 218.20' S= 0.0467 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 246.94' @ 12.09 hrs	Primary OutFlow Max=0.31 cfs @ 12.09 hrs HW=219.21' (Free Discharge)
Flood Elev= 250.20'	Summary for Pond 61P: DMH-11
Device Routing Invert Outlet Devices #1 Primary 246.40' 12.0" Round Culvert L= 85.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 246.40' / 240.00' S= 0.0753 '/ Cc= 0.900 n= 0.013. Flow Area= 0.79 sf	Inflow Area = 0.249 ac,100.00% Impervious, Inflow Depth = 5.31" for 25-yr event Inflow = 1.32 cfs @ 12.09 hrs, Volume= 0.110 af Outflow = 1.32 cfs @ 12.09 hrs, Volume= 0.110 af, Atten= 0%, Lag= 0.0 min Primary = 1.32 cfs @ 12.09 hrs, Volume= 0.110 af
Primary OutFlow Max=0.83 cfs @ 12.09 hrs HW=246.93' (Free Discharge)	Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 232.30' @ 12.09 hrs Flood Elev= 235.70'
Summary for Pond 56P: DMH-12	Device Routing Invert Outlet Devices
Inflow Area = 0.161 ac,100.00% Impervious, Inflow Depth = 5.31" for 25-yr event Inflow = 0.85 cfs @ 12.09 hrs, Volume= 0.071 af Outflow = 0.85 cfs @ 12.09 hrs, Volume= 0.071 af, Atten= 0%, Lag= 0.0 min Primary = 0.85 cfs @ 12.09 hrs, Volume= 0.071 af	#1 Primary 231.60' 12.0'' Round Culvert L= 198.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 231.60' / 218.20' S= 0.0677 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 240.44' @ 12.09 hrs Flood Elev= 244.00'	Primary OutFlow Max=1.29 cfs @ 12.09 hrs HW=232.29' (Free Discharge) -1=Culvert (Inlet Controls 1.29 cfs @ 2.23 fps)

6842-Post Type III 24-hr 25-yr Rainfall=5.55" Prepared by {enter your company name here}	6842-Post Type III 24-hr 25-yr Rainfall=5.55" Prepared by {enter your company name here}
HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 115	HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 116
Summary for Pond 62P: CB-14	Device Routing Invert Outlet Devices
Inflow Area = 0.136 ac,100.00% Impervious, Inflow Depth = 5.31" for 25-yr event Inflow = 0.72 cfs @ 12.09 hrs, Volume= 0.060 af Outflow = 0.72 cfs @ 12.09 hrs, Volume= 0.060 af, Atten= 0%, Lag= 0.0 min Primary = 0.72 cfs @ 12.09 hrs, Volume= 0.060 af	#1 Primary 216.00' 12.0" Round Culvert L= 24.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.00' / 215.50' S= 0.0208 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 219.39' @ 12.09 hrs	Primary OutFlow Max=0.69 cfs @ 12.09 hrs HW=216.48' (Free Discharge) ←1=Culvert (Inlet Controls 0.69 cfs @ 1.86 fps)
Flood Elev= 221.90'	Summary for Pond 67P: CB-7
Device Routing Invert Outlet Devices #1 Primary 218.90' 12.0'' Round Culvert L = 15.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 218.90' / 218.20' S= 0.0467 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf	Inflow Area = 0.093 ac,100.00% Impervious, Inflow Depth = 5.31" for 25-yr event Inflow = 0.49 cfs @ 12.09 hrs, Volume= 0.041 af Outflow = 0.49 cfs @ 12.09 hrs, Volume= 0.041 af, Atten= 0%, Lag= 0.0 min Primary = 0.49 cfs @ 12.09 hrs, Volume= 0.041 af Routing by Stor-Ind method. Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Primary OutFlow Max=0.70 cfs @ 12.09 hrs HW=219.38' (Free Discharge) -1=Culvert (Inlet Controls 0.70 cfs @ 1.87 fps)	Peak Elev= 216.40' @ 12.09 hrs Flood Elev= 219.00'
Summary for Pond 63P: DMH-4	Device Routing Invert Outlet Devices
Inflow Area = 1.336 ac,100.00% Impervious, Inflow Depth = 5.31" for 25-yr event Inflow = 7.09 cfs @ 12.09 hrs, Volume= 0.591 af Outflow = 7.09 cfs @ 12.09 hrs, Volume= 0.591 af, Atten= 0%, Lag= 0.0 min Primary = 7.09 cfs @ 12.09 hrs, Volume= 0.591 af	#1 Primary 216.00' 12.0" Round Culvert L= 24.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.00' / 215.50' S= 0.0208 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Primary = 7.09 cfs @ 12.09 hrs, Volume= 0.591 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 215.66' @ 12.09 hrs 12.09 hrs	Primary OutFlow Max=0.48 cfs @ 12.09 hrs HW=216.39' (Free Discharge)
Flood Elev= 222.20'	Summary for Pond 68P: DMH-9
Device Routing Invert Outlet Devices #1 Primary 214.10' 24.0" Round Culvert L = 35.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 214.10' / 214.00' S= 0.0029 '/' Cc= 0.900 n= 0.013, Flow Area= 3.14 sf	Inflow Area = 0.909 ac, 78.68% Impervious, Inflow Depth = 4.60" for 25-yr event Inflow = 4.49 cfs @ 12.09 hrs, Volume= 0.349 af Outflow = 4.49 cfs @ 12.09 hrs, Volume= 0.349 af, Atten= 0%, Lag= 0.0 min Primary = 4.49 cfs @ 12.09 hrs, Volume= 0.349 af Dutflow is 4.49 cfs @ 12.09 hrs, Volume= 0.349 af
Primary OutFlow Max=6.90 cfs @ 12.09 hrs HW=215.63' (Free Discharge) —1=Culvert (Barrel Controls 6.90 cfs @ 3.69 fps)	Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 217.65' @ 12.09 hrs Flood Elev= 219.40'
Summary for Pond 66P: CB-6	Device Routing Invert Outlet Devices
Inflow Area = 0.134 ac,100.00% Impervious, Inflow Depth = 5.31" for 25-yr event Inflow = 0.71 cfs @ 12.09 hrs, Volume= 0.060 af Outflow = 0.71 cfs @ 12.09 hrs, Volume= 0.060 af, Atten= 0%, Lag= 0.0 min Primary = 0.71 cfs @ 12.09 hrs, Volume= 0.060 af	#1 Primary 216.10' 15.0" Round Culvert L= 79.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.10' / 215.40' S= 0.0089 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.49' @ 12.09 hrs Flood Elev= 219.00'	Primary OutFlow Max=4.38 cfs @ 12.09 hrs HW=217.61' (Free Discharge) 1=Culvert (Inlet Controls 4.38 cfs @ 3.57 fps)

2-Post Type III 24-hr 25-yr Rainfall=5.55" pared by {enter your company name here} page 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 117	6842-Post Type III 24-hr 25-yr Rainfall=5.55 Prepared by {enter your company name here} HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 11{
Summary for Pond 69P: CB-11	Device Routing Invert Outlet Devices #1 Primary 215.50' 12.0" Round Culvert
w Area = 0.107 ac,100.00% Impervious, Inflow Depth = 5.31" for 25-yr event w = 0.57 cfs @ 12.09 hrs, Volume= 0.047 af low = 0.57 cfs @ 12.09 hrs, Volume= 0.047 af, Atten= 0%, Lag= 0.0 min nary = 0.57 cfs @ 12.09 hrs, Volume= 0.047 af	L= 32.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.50' / 215.30' S= 0.0062 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
ting by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs k Elev= 216.76' @ 12.09 hrs	Primary OutFlow Max=0.91 cfs @ 12.09 hrs HW=216.09' (Free Discharge) ▲1=Culvert (Barrel Controls 0.91 cfs @ 2.72 fps)
d Elev= 219.30'	Summary for Pond 72P: CB-9
ice Routing Invert Outlet Devices i1 Primary 216.30' 12.0" Round Culvert L= 14.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.30' / 216.20' S= 0.0071 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf mary OutFlow Max=0.55 cfs @ 12.09 hrs HW=216.76' (Free Discharge) =Culvert (Barrel Controls 0.55 cfs @ 2.33 fps)	Inflow Area = 0.165 ac,100.00% Impervious, Inflow Depth = 5.31" for 25-yr event Inflow = 0.88 cfs @ 12.09 hrs, Volume= 0.073 af Outflow = 0.88 cfs @ 12.09 hrs, Volume= 0.073 af, Atten= 0%, Lag= 0.0 min Primary = 0.88 cfs @ 12.09 hrs, Volume= 0.073 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.09' @ 12.09 hrs Flood Elev= 218.50' 12.09 hrs
Summary for Pond 70P: CB-12	Device Routing Invert Outlet Devices
w Area = 0.802 ac, 75.84% Impervious, Inflow Depth = 4.51" for 25-yr event w = 3.92 cfs @ 12.09 hrs, Volume= 0.301 af low = 3.92 cfs @ 12.09 hrs, Volume= 0.301 af, Atten= 0%, Lag= 0.0 min	#1 Primary 215.50' 12.0" Round Culvert L= 37.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.50' / 215.30' S= 0.0054 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
hary = 3.92 cfs @ 12.09 hrs, Volume= 0.301 af ting by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs	Primary OutFlow Max=0.85 cfs @ 12.09 hrs HW=216.08' (Free Discharge) └─1=Culvert (Barrel Controls 0.85 cfs @ 2.62 fps)
k Elev= 217.67' @ 12.09 hrs d Elev= 219.30'	Summary for Pond 73P: DMH-6
ice Routing Invert Outlet Devices #1 Primary 216.30' 15.0" Round Culvert L= 14.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.30' / 216.20' S= 0.0071 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf mary OutFlow Max=3.83 cfs @ 12.09 hrs HW=217.64' (Free Discharge) =Culvert (Barrel Controls 3.83 cfs @ 3.61 fps)	Inflow Area = 0.340 ac,100.00% Impervious, Inflow Depth = 5.31" for 25-yr event Inflow = 1.81 cfs @ 12.09 hrs, Volume= 0.151 af Outflow = 1.81 cfs @ 12.09 hrs, Volume= 0.151 af, Atten= 0%, Lag= 0.0 min Primary = 1.81 cfs @ 12.09 hrs, Volume= 0.151 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.07" @ 12.09 hrs Flood Elev= 219.10' 12.09 hrs
Summary for Pond 71P: CB-8	Device Routing Invert Outlet Devices
w Area = 0.175 ac,100.00% Impervious, Inflow Depth = 5.31" for 25-yr event w = 0.93 cfs @ 12.09 hrs, Volume= 0.078 af low = 0.93 cfs @ 12.09 hrs, Volume= 0.078 af, Atten= 0%, Lag= 0.0 min nary = 0.93 cfs @ 12.09 hrs, Volume= 0.078 af ting by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs k Elev= 216.10' @, 12.09 hrs	#1 Primary 215.20' 12.0" Round Culvert L= 52.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.20' / 214.80' S= 0.0077 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf Primary OutFlow Max=1.76 cfs @ 12.09 hrs HW=216.05' (Free Discharge) 1=Culvert (Inlet Controls 1.76 cfs @ 2.48 fps)

6842-Post Type III 24-hr 25-yr Rainfall=5.55" Prepared by {enter your company name here}	6842-Post Type III 24-hr 25-yr Rainfall=5.55" Prepared by {enter your company name here}
HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 119	HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 120
Summary for Pond 78P: CB-19	Device Routing Invert Outlet Devices #1 Primary 214.70' 15.0" Round Culvert
Inflow Area = 0.122 ac,100.00% Impervious, Inflow Depth = 5.31" for 25-yr event Inflow = 0.65 cfs @ 12.09 hrs, Volume= 0.054 af Outflow = 0.65 cfs @ 12.09 hrs, Volume= 0.054 af, Atten= 0%, Lag= 0.0 min Primary = 0.65 cfs @ 12.09 hrs, Volume= 0.054 af	#1 Primary 214.70' 15.0" Round Culvert L= 67.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 214.70' / 214.20' S= 0.0075 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.87' @ 12.09 hrs	Primary OutFlow Max=3.43 cfs @ 12.09 hrs HW=215.86' (Free Discharge)
Flood Elev= 219.00'	Summary for Pond 81P: CB-5
Device Routing Invert Outlet Devices #1 Primary 216.40' 12.0" Round Culvert L= 45.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.40' / 216.10' S= 0.0067 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf	Inflow Area = 0.287 ac, 88.82% Impervious, Inflow Depth = 4.96" for 25-yr event Inflow = 1.49 cfs @ 12.09 hrs, Volume= 0.119 af Outflow = 1.49 cfs @ 12.09 hrs, Volume= 0.119 af, Atten= 0%, Lag= 0.0 min Primary = 1.49 cfs @ 12.09 hrs, Volume= 0.119 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Primary OutFlow Max=0.63 cfs @ 12.09 hrs HW=216.86' (Free Discharge)	Peak Elev= 216.79' @ 12.09 hrs Flood Elev= 219.00'
Summary for Pond 79P: CB-10	Device Routing Invert Outlet Devices
Inflow Area = 0.200 ac,100.00% Impervious, Inflow Depth = 5.31" for 25-yr event Inflow = 1.06 cfs @ 12.09 hrs, Volume= 0.089 af Outflow = 1.06 cfs @ 12.09 hrs, Volume= 0.089 af, Atten= 0%, Lag= 0.0 min Primary = 1.06 cfs @ 12.09 hrs, Volume= 0.089 af	#1 Primary 216.00' 12.0" Round Culvert L= 31.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.00' / 215.80' S= 0.0065 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 217.01' @ 12.09 hrs	Primary OutFlow Max=1.45 cfs @ 12.09 hrs HW=216.78' (Free Discharge) —1=Culvert (Barrel Controls 1.45 cfs @ 3.03 fps)
Flood Elev= 219.00'	Summary for Pond 82P: DMH-3
Device Routing Invert Outlet Devices #1 Primary 216.40' 12.0" Round Culvert L= 17.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.40' / 216.10' S= 0.0176 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf	Inflow Area = 0.287 ac, 88.82% Impervious, Inflow Depth = 4.96" for 25-yr event Inflow = 1.49 cfs @ 12.09 hrs, Volume= 0.119 af Outflow = 1.49 cfs @ 12.09 hrs, Volume= 0.119 af, Atten= 0%, Lag= 0.0 min Primary = 1.49 cfs @ 12.09 hrs, Volume= 0.119 af
Primary OutFlow Max=1.03 cfs @ 12.09 hrs HW=217.00' (Free Discharge) —1=Culvert (Inlet Controls 1.03 cfs @ 2.09 fps)	Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.47' @ 12.09 hrs Flood Elev= 218.90'
Summary for Pond 80P: DMH-5	Device Routing Invert Outlet Devices
Inflow Area = 0.663 ac,100.00% Impervious, Inflow Depth = 5.31" for 25-yr event Inflow = 3.52 cfs @ 12.09 hrs, Volume= 0.294 af Outflow = 3.52 cfs @ 12.09 hrs, Volume= 0.294 af, Atten= 0%, Lag= 0.0 min Primary = 3.52 cfs @ 12.09 hrs, Volume= 0.294 af	#1 Primary 215.70' 12.0" Round Culvert L= 70.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.70' / 215.30' S= 0.0057 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 215.88' @ 12.09 hrs Flood Elev= 220.00'	Primary OutFlow Max=1.45 cfs @ 12.09 hrs HW=216.46' (Free Discharge) -1=Culvert (Barrel Controls 1.45 cfs @ 3.13 fps)

implement 22.05 cm 23.24 hrs. Volume 7.202 af implement 22.05 cm 23.4 hrs. Volume 7.202 af Atten= 0%, Lag= 0.0 min implement 30.05 thrs. Subcatchment39: APT. BLDG. A Rundf Area=17.818 af 100.00% Impervious Rundf Brace=17.818 af 100.00% Impervious Rundf B	Std2-Post Type III 24-hr 25-yr repared by {enter your company name here}	Prepared by {enter your compa	Type III 24-hr 100-yr Rainfall=7.81' any name here} 2020 HydroCAD Software Solutions LLC Page 122
ry = 42.05 cf @ 12.34 hrs, Volume 7.202 af, Attene 0%, Lag= 0.0 min ry outliow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Subcatchment163: APT, BLDG, A Subcatchment163: APT, BLDG, B Rundf Avae=17.818 af 100.00% impervious Rundf Depht=7.67 To=6.0 mm CN=68 Rundf=3.06 ch 0.258 al Subcatchment163: APT, BLDG, B Rundf Avae=17.818 af 100.00% impervious Rundf Depht=7.67 To=6.0 mm CN=68 Rundf=3.06 ch 0.258 al Subcatchment21S: A.1 Rundf Avae=17.818 af 100.00% impervious Rundf Depht=7.67 To=6.0 mm CN=68 Rundf=3.06 ch 0.258 al Subcatchment21S: A.1 Rundf Avae=17.818 af 100.00% impervious Rundf Depht=7.67 To=6.0 mm CN=68 Rundf=3.06 ch 0.258 al Subcatchment21S: A.1 Rundf Avae=17.818 af 100.00% impervious Rundf Depht=7.67 To=6.0 mm CN=68 Rundf=3.26 ch 0.208 al Subcatchment22S: A.2 Rundf Avae=17.818 af 100.00% impervious Rundf Depht=7.67 To=6.0 mm CN=68 Rundf=3.26 ch 0.208 al Subcatchment23S: A.3 Rundf Avae=17.818 af 100.00% impervious Rundf Depht=7.67 To=6.0 mm CN=68 Rundf=3.26 ch 0.208 al Subcatchment23S: A.3 Rundf Avae=17.818 af 100.00% impervious Rundf Depht=7.67 To=6.0 mm CN=68 Rundf=3.26 ch 0.208 al Subcatchment23S: A.3 Rundf Avae=17.818 af 100.00% impervious Rundf Depht=7.67 To=6.0 mm CN=68 Rundf=3.26 ch 0.078 al Subcatchment28S: A.5 Rundf Avae=17.810 af 100.00% impervious Rundf Depht=7.67 To=6.0 mm CN=68 Rundf=3.26 ch 0.078 al Subcatchment28S: B.5 Rundf Avae=17.810 af 3.71% impervious Rundf Depht=7.67 To=6.0 mm CN=68 Rundf=3.26 ch 0.028 al Subcatchment28S: B.4 Rundf Avae=17.800 af 3.71% impervious Rundf Depht=7.67 To=6.0 mm CN=68 Rundf=2.26 ch 0.178 al Subcatchment28S: B.3 Rundf Avae=17.000 af 3.75% impervious Rundf Depht=7.47 To=6.0 mm CN=68 Rundf=2.26 ch 0.178 al Subcatchment39S: B.3 Rundf Avae=17.000 af 3.75% impervious Rundf Depht=7.47 To=6.0 mm CN=68 Rundf=2.26 ch 0.178 al Subcatchment39S: B.3 Rundf Avae=17.000 af 3.75% impervious Rundf Depht=7.47 To=6.0 mm CN=68 Rundf=2.26 ch 0.178 al Subcatchment39S: B.3 Rundf Avae=17.000 af 3.75% impervious Rundf Depht=7.47		Runoff	by SCS TR-20 method, UH=SCS, Weighted-CN
Subcatchment 16S: APT, BLDG.B Rundt Area=17,818 st 100,00% impervious. Rundt Depth=7,57 Subcatchment 18S: APT, BLDG.C Rundt Area=17,818 st 100,00% impervious. Rundt Depth=5,22 Subcatchment 21S: A.1 Rundf Area=20,165 st 5,87% impervious. Rundt Depth=5,22 To=50 mm CN=68 Rundt Area=17,836 st 100,00% impervious. Rundt Depth=5,22 Subcatchment 22S: A.2 Rundf Area=17,836 st 100,00% impervious. Rundt Depth=7,577 To=60 mm CN=88 Rundt Area=17,836 st 100,00% impervious. Rundt Depth=7,577 To=60 mm CN=88 Rundt Area=17,836 st 100,00% impervious. Rundt Depth=7,577 To=60 mm CN=88 Rundt Area=12,836 st 100,00% impervious. Rundt Depth=7,577 To=60 mm CN=88 Rundt Area=12,857 st 100,00% impervious. Rundt Depth=7,577 Subcatchment 25S: A.5 Rundt Area=2,24,258 st 100,00% impervious. Rundt Depth=7,577 To=60 mm CN=88 Rundt Area=12,857 st 100,00% impervious. Rundt Depth=7,577 To=60 mm CN=68 Rundt Area=12,857 st 100,00% impervious. Rundt Depth=7,577 To=60 mm CN=68 Rundt Area=12,857 st 100,00% impervious. Rundt Depth=7,877 To=60 mm CN=608 Rundt Area=12,857 st 100,90% impervious. Rundt Depth=7,877 To=60 mm CN=608 Rundt Area=12,857 st 100,90% impervious. Rundt Depth=7,877 To=60 mm CN=608 Rundt Area=12,857 st 100,90% impervious. Rundt Depth=7,877 <		Subcatchment9S: APT. BLDG.	
Tc=60 min CA=96 Runoff=3.06 cfs 0.258 at Subcatchment21S: A.1 Runoff Area=20.065 cfs 5.02% at Subcatchment22S: A.2 Runoff Area=3.065 cfs 0.00% Impervious Runoff Breas=3.05 cfs Subcatchment22S: A.2 Runoff Area=3.05 cfs 0.00% Impervious Runoff Breas=3.05 cfs Subcatchment23S: A.3 Runoff Area=5.34 if 100.00% Impervious Runoff Breas=5.77 Tc=6.0 min CA+98 Runoff=2.68 cfs Subcatchment24S: A.4 Runoff Area=5.34 if 100.00% Impervious Runoff Breas=5.34 if 100.00% Impervious Runoff Deph=7.57 Tc=6.0 min Subcatchment24S: A.4 Runoff Area=5.34 if 100.00% Impervious Runoff Deph=7.57 Tc=6.0 min CA+98 Runoff=2.58 cfs Subcatchment26S: B.6 Runoff Area=5.43 if 100.00% Impervious Runoff Deph=7.57 Tc=6.0 min CA+98 Runoff=2.58 cfs Subcatchment26S: B.6 Runoff Area=1.78 min Runoff Area=1.78 min Runoff Area=1.78 min Area0.000 sf 2.23 1% Impervious Runoff Area=1.48 cfs 3.03 cfs Subcatchment26S: B.6 Runoff Area=1.28 of cf 3.03 Runoff=2.24 cfs 0.03 sf 1.03 Runoff=2.00 min 1.04 Runoff=2	imary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs	Subcatchment 16S: APT. BLDG	
Tc=10.0 min CN=78 Runoff-2.43 cfs 0.202 at Subcatchment22S: A.2 Runoff Area=13,850 sf 100.00% Impervious Runoff 26 cfs 0.201 at Subcatchment23S: A.3 Runoff Area=5,767 sf 100.00% Impervious Runoff 1.48 cfs 0.201 at Subcatchment24S: A.4 Runoff Area=5,767 sf 100.00% Impervious Runoff 4.26 to 0.714 at Subcatchment24S: A.4 Runoff Area=5,767 sf 100.00% Impervious Runoff 4.26 to 0.717 Tc=6.0 min CN=98 Runoff 4.26 to 0.717 Tc=6.0 min CN=98 Runoff 4.26 to 0.717 Tc=6.0 min CN=98 Runoff 2.23 tfs 0.717 Runoff=4.20 cfs 0.325 at Subcatchment26S: B.6 Runoff Area=30.90 sf 2.315 timesrvious Runoff 2.435 timesrvious Runo		Subcatchment 18S: APT. BLDG	
Te=0.0 min CH=08 Runoff 2.38 cfs 0.201 at Subcatchment23S: A.3 Runoff Area=9.767 af 100.00% Impervious Runoff DephF-7.577 Te=0.0 min CH=08 Runoff Area=9.767 af 100.00% Impervious Runoff DephF-7.577 Te=0.0 min CH=08 Runoff Area=5.341 af 100.00% Impervious Runoff DephF-7.577 Te=0.0 min CH=08 Runoff Area=22.426 af 100.00% Impervious Runoff DephF-7.577 Te=0.0 min CH=08 Runoff-3.25 cfs 0.00.00% Impervious Runoff DephF-7.577 Te=0.0 min CH=08 Runoff-3.25 cfs 0.00.00% Impervious Runoff DephF-7.577 Te=0.0 min CH=08 Runoff-3.25 cfs 0.00.00% Impervious Runoff DephF-7.577 Te=0.0 min CH=08 Runoff-3.25 cfs 0.00.00% Impervious Runoff DephF-3.677 Subcatchment26S: B.6 Runoff Area=20,090 sf 2.2.31% Impervious Runoff DephF-3.677 Tc=6.0 min Subcatchment27S: A.6 Runoff Area=30,829 af 0.83% Impervious Runoff DephF-3.677 Tc=6.0 min Tc=0.0 min CH=77 Runoff-3.25 cfs 0.017 at Tc=6.0 min CH=93 Subcatchment28S: B.1 Runoff Area=30,829 af 0.83% Impervious Runoff DephF-3.677 Tc=6.0 min CH=6.0 min Subcatchment28S: B.3 Runoff Area=13.381 tf af 75.7% Impervious Runoff DephF-3.477 <td< td=""><td></td><td>Subcatchment 21S: A.1</td><td></td></td<>		Subcatchment 21S: A.1	
Subcatchment24S: A.4 Runoff Area=5,341 sf 100,00% Impervious Runoff Depth=7,57 Tc=6.0 min CN=98 Runoff Depth=7,67 Tc=6.0 min CN=97 Runoff Depth=7,67 Ru		Subcatchment 22S: A.2	
Tc=6.0 min CN=98 Runoff=0.92 cfs 0.077 at Subcatchment25S: A.5 Runoff Area=22.426 sf 100.00% (Impervious Runoff Depth=7.57) Tc=6.0 min CN=98 Runoff=3.85 cfs 0.326 st 0.326 st Subcatchment26S: B.6 Runoff Area=22.426 sf 100.00% (Impervious Runoff Depth=4.64) Tc=6.0 min UI Adjusted CN=73 Runoff=4.90 cfs 0.356 at Subcatchment27S: A.6 Runoff Area=12,567 sf 87.12% (Impervious Runoff Depth=7.67) Tc=6.0 min CN=94 Runoff=4.90 cfs 0.307 at Subcatchment28S: B.1 Runoff Area=12,567 sf 87.12% (Impervious Runoff Depth=7.67) Tc=6.0 min CN=94 Runoff=2.42 cfs 0.301 at Subcatchment28S: B.1 Runoff Area=30,829 sf 0.88% (Impervious Runoff Depth=5.67) Tc=6.0 min CN=97 Runoff=4.92 cfs 0.301 at Subcatchment29S: B.2 Runoff Area=17,060 sf 9.572% (Impervious Runoff Depth=7.457 Tc=6.0 min CN=97 Runoff Area=27.000 sf 2.64 st 0.179 at Subcatchment30S: B.3 Subcatchment30S: B.3 Runoff Area=17,060 sf 9.572% (Impervious Runoff Depth=7.457 Tc=6.0 min CN=67 Runoff=2.92 cfs 0.		Subcatchment 23S: A.3	
Tc=6.0 min CN=98 Runoff=3.85 cfs 0.325 at Subcatchment26S: B.6 Runoff Area=40,090 sf 22.31% Impervious Runoff Depth=4.64 Tc=6.0 min U1 Adjusted CN=73 Runoff=4.90 cfs 0.356 at Subcatchment27S: A.6 Runoff Area=12,65 rf 87.12% Impervious Runoff Depth=7.09 Tc=6.0 min CN=94 Runoff=2.10 tc=6.0 min CN=94 Runoff=2.10 tc=6.0 min CN=94 Runoff=2.10 tc=6.0 min CN=74 Runoff=4.11 cfs 0.301 at Subcatchment29S: B.1 Runoff Area=13,381 sf 83.76% Impervious Runoff Depth=7.69 Tc=6.0 min CN=77 Runoff=4.11 cfs 0.301 at Subcatchment30S: B.3 Runoff Area=17,060 sf 95.72% Impervious Runoff Depth=7.45 Tc=6.0 min CN=97 Runoff=2.42 cfs 0.243 at Subcatchment31S: B.4 Runoff Area=17,060 sf 95.72% Impervious Runoff Depth=7.45 Tc=6.0 min CN=97 Runoff=2.32 cfs 0.243 at Subcatchment32S: B.5 Runoff Area=24,627 sf 67.38% Impervious Runoff Depth=7.45 Tc=6.0 min CN=97 Runoff=2.32 cfs 0.243 at Subcatchment32S: B.5 Runoff Area=24,627 sf 67.38% Impervious Runoff Depth=7.45 Tc=6.0 min CN=97 Runoff=3.92 cfs 0.301 at		Subcatchment 24S: A.4	
Tc=6.0 min UI Adjusted CN=73 Runoff 4.90 cfs 0.356 at Subcatchment27S: A.6 Runoff Area=12,567 sf 87.12% Impervious Runoff Depth=7.09 Subcatchment28S: B.1 Runoff Area=30,829 sf 0.88% Impervious Runoff Depth=5.10 Subcatchment29S: B.2 Runoff Area=13,381 sf 83.76% Impervious Runoff Depth=6.37' Subcatchment30S: B.3 Runoff Area=17,060 sf 9.5.72% Impervious Runoff 2.24 cfs 0.179 at Subcatchment31S: B.4 Runoff Area=17,060 sf 9.5.72% Impervious Runoff Depth=7.45' Tc=6.0 min CN=97 Runoff 2.22 cfs 0.243 at Subcatchment31S: B.4 Runoff Area=21,060 sf 9.5.72% Impervious Runoff Depth=7.45' Tc=6.0 min CN=97 Runoff=2.92 cfs 0.243 at Subcatchment31S: B.4 Runoff Area=24,627 sf 9.5.72% Impervious Runoff=2.92 cfs 0.243 at Subcatchment32S: B.5 Runoff Area=24,627 sf 67.38% Impervious Runoff=2.92 cfs 0.243 at Subcatchment33S: B.7 Runoff Area=290,511 sf 2.55% Impervious Runoff=3.92 cfs 0.301 at		Subcatchment 25S: A.5	
Tc=6.0 min CN=94 Runoff=2.12 cfs 0.171 at Subcatchment28S: B.1 Runoff Area=30.829 sf 0.88% Impervious Runoff Depth=5.10 Tc=6.0 min CN=77 Runoff=4.11 cfs 0.301 at Subcatchment29S: B.2 Runoff Area=13,381 sf 83.76% Impervious Runoff Depth=6.97 Tc=6.0 min CN=93 Runoff=2.24 cfs 0.179 at Subcatchment30S: B.3 Runoff Area=17,060 sf 95.72% Impervious Runoff Depth=7.45 Tc=6.0 min CN=97 Runoff=2.92 cfs 0.243 at Subcatchment31S: B.4 Runoff Area=17,060 sf 95.72% Impervious Runoff Depth=7.45 Tc=6.0 min CN=97 Runoff=2.92 cfs 0.243 at Subcatchment31S: B.4 Runoff Area=27,060 sf 95.72% Impervious Runoff Depth=7.45 Tc=6.0 min CN=97 Runoff=2.92 cfs 0.243 at Subcatchment31S: B.4 Runoff Area=24,627 sf 67.38% Impervious Runoff Depth=6.38 Tc=6.0 min CN=93 Runoff=3.92 cfs 0.301 at Subcatchment32S: B.5 Runoff Area=24,627 sf 67.38% Impervious Runoff Depth=4.41		Subcatchment 26S: B.6	
Tc=6.0 min CN=77 Runoff=4.11 cfs 0.301 at Subcatchment 29S: B.2 Runoff Area=13,381 sf 83.76% Impervious Runoff Depth=6.97" Tc=6.0 min CN=93 Runoff=2.24 cfs 0.179 at Subcatchment 30S: B.3 Runoff Area=17,060 sf 95.72% Impervious Runoff Depth=7.45" Tc=6.0 min CN=97 Runoff=2.92 cfs 0.243 at Subcatchment 31S: B.4 Runoff Area=17,060 sf 95.72% Impervious Runoff Depth=7.45" Tc=6.0 min CN=97 Runoff=2.92 cfs 0.243 at Subcatchment 31S: B.4 Runoff Area=17,060 sf 95.72% Impervious Runoff Depth=7.45" Tc=6.0 min CN=97 Runoff=2.92 cfs 0.243 at Subcatchment 32S: B.5 Runoff Area=24,627 sf 67.38% Impervious Runoff Depth=6.36" Tc=6.0 min CN=88 Runoff=3.92 cfs 0.301 at Subcatchment 33S: B.7 Runoff Area=290,511 sf 2.55% Impervious Runoff Depth=4.41"		Subcatchment 27S: A.6	
Tc=6.0 min CN=93 Runoff=2.24 cfs 0.179 at Subcatchment 30S: B.3 Runoff Area=17,060 sf 95.72% Impervious Runoff Depth=7.45" Subcatchment 31S: B.4 Runoff Area=17,060 sf 95.72% Impervious Runoff Depth=7.45" Subcatchment 31S: B.4 Runoff Area=17,060 sf 95.72% Impervious Runoff Depth=7.45" Subcatchment 32S: B.5 Runoff Area=24,627 sf 67.38% Impervious Runoff Depth=6.38" Tc=6.0 min CN=98 Runoff = 2.92 cfs 0.301 at Subcatchment 33S: B.7 Runoff Area=20,511 sf 2.55% Impervious Runoff Depth=4.41"		Subcatchment 28S: B.1	
Subcatchment 31S: B.4 Runoff Area=17,060 sf 95.72% Impervious Runoff Depth=7.45" Subcatchment 32S: B.5 Runoff Area=24,627 sf 67.38% Impervious Runoff Depth=6.38" Subcatchment 33S: B.7 Runoff Area=290,511 sf 2.55% Impervious Runoff Depth=4.41"		Subcatchment 29S: B.2	
Subcatchment 32S: B.5 Runoff Area=24,627 sf 67.38% Impervious Runoff Depth=6.38" Subcatchment 33S: B.7 Runoff Area=290,511 sf 2.55% Impervious Runoff Depth=4.41"		Subcatchment 30S: B.3	
Subcatchment 33S: B.7 Runoff Area=290,511 sf 2.55% Impervious Runoff Depth=4.41"		Subcatchment 31S: B.4	
		Subcatchment 32S: B.5	
10-30.0 mini GN-71 Kunon-19.46 Cis 2.434 an		Subcatchment 33S: B.7	Runoff Area=290,511 sf 2.55% Impervious Runoff Depth=4.41" Tc=30.0 min CN=71 Runoff=19.48 cfs 2.454 af

6842-Post	Type III 24-hr 100-yr Rainfall=7.81"	6842-Post Type III 24-hr 100	-yr Rainfall=7.81"
Prepared by {enter your company r HydroCAD® 10.10-3a s/n 03590 © 2020		Prepared by {enter your company name here} HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC	Page 124
Subcatchment 34S: B.8	Runoff Area=12,484 sf 88.82% Impervious Runoff Depth=7.21" Tc=6.0 min CN=95 Runoff=2.12 cfs 0.172 af	Subcatchment 52S: B.9 Runoff Area=15,018 sf 80.72% Impervious	
Subcatchment 35S: C.1	Runoff Area=236,308 sf 9.34% Impervious Runoff Depth=5.10" Tc=20.0 min UI Adjusted CN=77 Runoff=21.74 cfs 2.306 af	Tc=6.0 min CN=92 Runo Pond 4P: Constructed Stormwater Peak Elev=215.11' Storage=21,459 cf Inflow	/=15.95 cfs 1.187 af
Subcatchment 36S: C.2	Runoff Area=22,516 sf 83.62% Impervious Runoff Depth=6.97" Tc=6.0 min CN=93 Runoff=3.77 cfs 0.300 af	Pond 5P: Wet Basin Peak Elev=216.35' Storage=30,936 cf Inflow	
Subcatchment 37S: C.3	Runoff Area=12,429 sf 61.75% Impervious Runoff Depth=6.26" Tc=6.0 min CN=87 Runoff=1.96 cfs 0.149 af	Pond 7P: Constructed Stormwater Wetland Peak Elev=215.59' Storage=8,934 cf Inflow	v=13.77 cfs 3.219 af v=43.15 cfs 5.032 af v=40.47 cfs 5.032 af
Subcatchment 38S: C.4	Runoff Area=4,655 sf 100.00% Impervious Runoff Depth=7.57" Tc=6.0 min CN=98 Runoff=0.80 cfs 0.067 af	Pond 12P: STONE RECHARGE TRENCH Peak Elev=221.01' Storage=1,942 cf Inflo Discarded=0.17 cfs 0.188 af Primary=2.83 cfs 0.070 af Outflor	w=3.06 cfs 0.258 af
Subcatchment 39S: C.5	Runoff Area=5,857 sf 100.00% Impervious Runoff Depth=7.57" Tc=6.0 min CN=98 Runoff=1.01 cfs 0.085 af	Pond 17P: STONE RECHARGE TRENCH Peak Elev=221.01' Storage=1,942 cf Inflo Discarded=0.17 cfs 0.188 af Primary=2.83 cfs 0.070 af Outflo	w=3.06 cfs 0.258 af
Subcatchment 40S: C.6	Runoff Area=4,047 sf 100.00% Impervious Runoff Depth=7.57" Tc=6.0 min CN=98 Runoff=0.70 cfs 0.059 af	Pond 19P: STONE RECHARGE TRENCH Peak Elev=221.01' Storage=1,942 cf Inflo Discarded=0.17 cfs 0.188 af Primary=2.83 cfs 0.070 af Outflo	w=3.06 cfs 0.258 af
Subcatchment 41S: C.7	Runoff Area=7,188 sf 100.00% Impervious Runoff Depth=7.57" Tc=6.0 min CN=98 Runoff=1.24 cfs 0.104 af	Pond 21P: CB-4 12.0" Round Culvert n=0.013 L=37.0' S=0.0054 '/' Outflo	w=2.49 cfs 0.197 af
Subcatchment 42S: C.8	Runoff Area=7,639 sf 100.00% Impervious Runoff Depth=7.57" Tc=6.0 min CN=98 Runoff=1.31 cfs 0.111 af	Pond 22P: DMH-2 Peak Elev=218.79' Inflow	v=11.14 cfs 0.886 af
Subcatchment 43S: C.9	Runoff Area=8,732 sf 100.00% Impervious Runoff Depth=7.57" Tc=6.0 min CN=98 Runoff=1.50 cfs 0.126 af	18.0" Round Culvert n=0.013 L=101.0' S=0.0050 '/' Outflow Pond 23P: CB-1 Peak Elev=216.66' Inflo	w=2.24 cfs 0.179 af
Subcatchment 44S: C.10	Runoff Area=5,326 sf 100.00% Impervious Runoff Depth=7.57" Tc=6.0 min CN=98 Runoff=0.92 cfs 0.077 af	12.0" Round Culvert n=0.013 L=27.0' S=0.0074 '/' Outflow Pond 24P: CB-2 Peak Elev=217.65' Inflow Peak Elev=217.65' Inflow Peak Elev=217.65' Inflow	w=2.92 cfs 0.243 af
Subcatchment 45S: C.11	Runoff Area=2,631 sf 100.00% Impervious Runoff Depth=7.57" Tc=6.0 min CN=98 Runoff=0.45 cfs 0.038 af	12.0" Round Culvert n=0.013 L=20.0' S=0.0400 '/' Outflow Pond 25P: CB-3 Peak Elev=218.72' Inflo	w=3.92 cfs 0.301 af
Subcatchment 46S: C.12	Runoff Area=5,910 sf 100.00% Impervious Runoff Depth=7.57" Tc=6.0 min CN=98 Runoff=1.02 cfs 0.086 af	12.0" Round Culvert n=0.013 L=38.0' S=0.0289 '/' Outflo Pond 26P: DMH-1 Peak Elev=217.87' Inflo	w=9.09 cfs 0.722 af
Subcatchment 47S: C.13	Runoff Area=1,987 sf 100.00% Impervious Runoff Depth=7.57" Tc=6.0 min CN=98 Runoff=0.34 cfs 0.029 af	18.0" Round Culvert n=0.013 L=56.0' S=0.0089 '/' Outflo Pond 27P: DCB-22 Peak Elev=217.66' Inflo	w=3.85 cfs 0.325 af
Subcatchment 48S: C.14	Runoff Area=1,885 sf 100.00% Impervious Runoff Depth=7.57" Tc=6.0 min CN=98 Runoff=0.32 cfs 0.027 af	12.0" Round Culvert n=0.013 L=50.0' S=0.0060 '/' Outflov Pond 28P: DMH-16 Peak Elev=217.88' Inflo	
Subcatchment 49S: C.15	Runoff Area=3,487 sf 100.00% Impervious Runoff Depth=7.57" Tc=6.0 min CN=98 Runoff=0.60 cfs 0.051 af	12.0" Round Culvert n=0.013 L=160.0' S=0.0050 '/' Outflov Pond 29P: CB-21 Peak Elev=216.76' Inflo	w=0.92 cfs 0.077 af
Subcatchment 50S: C.16	Runoff Area=3,508 sf 100.00% Impervious Runoff Depth=7.57" Tc=6.0 min CN=98 Runoff=0.60 cfs 0.051 af	12.0" Round Culvert n=0.013 L=26.0' S=0.0192 '/' Outflo Pond 30P: DMH-15 Peak Elev=215.94' Inflo	w=4.77 cfs 0.402 af
Subcatchment 51S: D.1	Runoff Area=402,771 sf 0.38% Impervious Runoff Depth=3.30" Tc=20.0 min CN=61 Runoff=23.60 cfs 2.543 af	15.0" Round Culvert n=0.013 L=250.0' S=0.0052 '/' Outflo	w=4.77 cts 0.402 af

5842-Post Prepared by {enter you		6842-Post Prepared by {enter your	
ydroCAD® 10.10-3a s/n 0	03590 © 2020 HydroCAD Software Solutions LLC Page 125	HydroCAD® 10.10-3a s/n 03	3590 © 2020 HydroCAD Software Solutions LLC Page 126
	Peak Elev=216.20' Inflow=10.95 cfs 0.915 af		
nd 31P: DMH-14	18.0" Round Culvert n=0.013 L=61.0' S=0.0049 '/' Outflow=10.95 cfs 0.915 af	Pond 67P: CB-7	Peak Elev=216.48' Inflow=0.70 cfs 0.059 a
	18.0 Round Cuivert 11–0.013 L–61.0 S–0.00497 Outliow–10.95 Cis 0.915 al	Pond 6/P: CB-/	12.0" Round Culvert n=0.013 L=24.0' S=0.0208 '/' Outflow=0.70 cfs 0.059 a
			12.0" Round Cuivert n=0.013 L=24.0 S=0.0208 7 Outflow=0.70 cfs 0.059 a
nd 32P: CB-20	Peak Elev=216.63' Inflow=2.38 cfs 0.201 af	Develop DMU 0	
	12.0" Round Culvert n=0.013 L=12.0' S=0.0167 '/' Outflow=2.38 cfs 0.201 af	Pond 68P: DMH-9	Peak Elev=218.68' Inflow=6.53 cfs 0.517 a
			15.0" Round Culvert n=0.013 L=79.0' S=0.0089 '/' Outflow=6.53 cfs 0.517 a
nd 33P: DMH-17	Peak Elev=218.43' Inflow=3.80 cfs 0.312 af		
	12.0" Round Culvert n=0.013 L=180.0' S=0.0050 '/' Outflow=3.80 cfs 0.312 af	Pond 69P: CB-11	Peak Elev=216.86' Inflow=0.80 cfs 0.067 a
			12.0" Round Culvert n=0.013 L=14.0' S=0.0071 '/' Outflow=0.80 cfs 0.067 a
d 34P: CB-23	Peak Elev=216.90' Inflow=2.12 cfs 0.171 af		
	12.0" Round Culvert n=0.013 L=28.0' S=0.0071 '/' Outflow=2.12 cfs 0.171 af	Pond 70P: CB-12	Peak Elev=218.43' Inflow=5.73 cfs 0.449 a
			15.0" Round Culvert n=0.013 L=14.0' S=0.0071 '/' Outflow=5.73 cfs 0.449 a
d 35P: CB-24	Peak Elev=216.73' Inflow=1.68 cfs 0.141 af		
	12.0" Round Culvert n=0.013 L=20.0' S=0.0100 '/' Outflow=1.68 cfs 0.141 af	Pond 71P: CB-8	Peak Elev=216.24' Inflow=1.31 cfs 0.111 a
			12.0" Round Culvert n=0.013 L=32.0' S=0.0062 '/' Outflow=1.31 cfs 0.111 a
d 36P: DMH-7	Peak Elev=217.15' Inflow=2.42 cfs 0.204 af		
	12.0" Round Culvert n=0.013 L=220.0' S=0.0055 '/' Outflow=2.42 cfs 0.204 af	Pond 72P: CB-9	Peak Elev=216.22' Inflow=1.24 cfs 0.104 a
		Tond 721 . OB-5	12.0" Round Culvert n=0.013 L=37.0' S=0.0054 '/' Outflow=1.24 cfs 0.104 a
d 37P: DMH-10	Peak Elev=219.23' Inflow=3.34 cfs 0.281 af		
	15.0" Round Culvert n=0.013 L=122.0' S=0.0295 '/' Outflow=3.34 cfs 0.281 af	Pond 73P: DMH-6	Peak Elev=216.43' Inflow=2.55 cfs 0.215 a
	15.0 Round Guvent 11–0.013 L-122.0 3–0.02937 Outliow-3.34 Cis 0.281 al	Pona / SP: DMH-6	12.0" Round Culvert n=0.013 L=52.0' S=0.0077 '/' Outflow=2.55 cfs 0.215 a
			12.0" Round Cuivert n=0.013 L=52.0" S=0.00777 Outflow=2.55 cfs 0.215 a
d 38P: CB-15	Peak Elev=232.52' Inflow=0.32 cfs 0.027 af		
	12.0" Round Culvert n=0.013 L=15.0' S=0.0333 '/' Outflow=0.32 cfs 0.027 af	Pond 78P: CB-19	Peak Elev=216.97' Inflow=0.92 cfs 0.077 a
			12.0" Round Culvert n=0.013 L=45.0' S=0.0067 '/' Outflow=0.92 cfs 0.077 a
39P: CB-16	Peak Elev=232.53' Inflow=0.34 cfs 0.029 af		
	12.0" Round Culvert n=0.013 L=15.0' S=0.0333 '/' Outflow=0.34 cfs 0.029 af	Pond 79P: CB-10	Peak Elev=217.16' Inflow=1.50 cfs 0.126 a
			12.0" Round Culvert n=0.013 L=17.0' S=0.0176 '/' Outflow=1.50 cfs 0.126 a
52P: CB-17	Peak Elev=247.84' Inflow=0.60 cfs 0.051 af		
	12.0" Round Culvert n=0.013 L=18.0' S=0.0500 '/' Outflow=0.60 cfs 0.051 af	Pond 80P: DMH-5	Peak Elev=216.45' Inflow=4.96 cfs 0.418 a
			15.0" Round Culvert n=0.013 L=67.0' S=0.0075 '/' Outflow=4.96 cfs 0.418 a
d 53P: CB-18	Peak Elev=247.84' Inflow=0.60 cfs 0.051 af		
	12.0" Round Culvert n=0.013 L=18.0' S=0.0500 '/' Outflow=0.60 cfs 0.051 af	Pond 81P: CB-5	Peak Elev=217.01' Inflow=2.12 cfs 0.172 a
			12.0" Round Culvert n=0.013 L=31.0' S=0.0065 '/' Outflow=2.12 cfs 0.172 a
d 54P: DMH-13	Peak Elev=247.06' Inflow=1.20 cfs 0.101 af		
u 54P. DMH-13	12.0" Round Culvert n=0.013 L=85.0' S=0.0753 '/' Outflow=1.20 cfs 0.101 af	Dand 82D: DMU 2	Peak Elev=216.70' Inflow=2.12 cfs 0.172 a
	12.0 Round Culvert II-0.013 L-65.0 3-0.07537 Outliow-1.20 Cis 0.101 al	Pond 82P: DMH-3	
			12.0" Round Culvert n=0.013 L=70.0' S=0.0057 '/' Outflow=2.12 cfs 0.172 a
d 56P: DMH-12	Peak Elev=240.56' Inflow=1.20 cfs 0.101 af		
	12.0" Round Culvert n=0.013 L=110.0' S=0.0745 '/' Outflow=1.20 cfs 0.101 af	Link 20L: DP-A	Inflow=76.09 cfs 11.979 a
			Primary=76.09 cfs 11.979 a
d 58P: CB-13	Peak Elev=219.28' Inflow=0.45 cfs 0.038 af		
	12.0" Round Culvert n=0.013 L=15.0' S=0.0467 '/' Outflow=0.45 cfs 0.038 af	Total Runoff	Area = 30.660 ac Runoff Volume = 12.544 af Average Runoff Depth = 4.
			75.28% Pervious = 23.079 ac 24.72% Impervious = 7.580
61P: DMH-11	Peak Elev=232.49' Inflow=1.87 cfs 0.157 af		·····
•••••	12.0" Round Culvert n=0.013 L=198.0' S=0.0677 '/' Outflow=1.87 cfs 0.157 af		
62P: CB-14	Peak Elev=219.50' Inflow=1.02 cfs 0.086 af		
02F. CD-14	12.0" Round Culvert n=0.013 L=15.0' S=0.0467 '/' Outflow=1.02 cfs 0.086 af		
	12.0 Round Cuvert II-0.013 L-13.0 3-0.04077 Outliow-1.02 Cis 0.060 al		
63P: DMH-4	Peak Elev=216.04' Inflow=10.00 cfs 0.843 af		
	24.0" Round Culvert n=0.013 L=35.0' S=0.0029 '/' Outflow=10.00 cfs 0.843 af		
d 66P: CB-6	Peak Elev=216.59' Inflow=1.01 cfs 0.085 af		
	12.0" Round Culvert n=0.013 L=24.0' S=0.0208 '/' Outflow=1.01 cfs 0.085 af		

6842-Post Type III 24-hr 100-yr Rainfall=7.81"	6842-Post Type III 24-hr 100-yr Rainfall=7.81
Prepared by {enter your company name here} HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 127	Prepared by {enter your company name here} HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 12
Summary for Subcatchment 9S: APT. BLDG. A	Summary for Subcatchment 21S: A.1
Runoff = 3.06 cfs @ 12.09 hrs, Volume= 0.258 af, Depth= 7.57"	Runoff = 2.43 cfs @ 12.14 hrs, Volume= 0.202 af, Depth= 5.22"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs [ype III 24-hr 100-yr Rainfall=7.81"	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-yr Rainfall=7.81"
Area (sf) CN Description	Area (sf) CN Description
17,818 98 Roofs, HSG A	* 18,718 77 >75% Grass cover, Good, HSG A
17,818 100.00% Impervious Area	* 291 43 Woods, Good, HSG A 95 98 Unconnected pavement, HSG A
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	1,091 98 Roofs, HSG A 20,195 78 Weighted Average
6.0 Direct Entry,	19,009 94.13% Pervious Area
Summary for Subcatchment 16S: APT. BLDG. B	1,1865.87% Impervious Area958.01% Unconnected
Runoff = 3.06 cfs @ 12.09 hrs, Volume= 0.258 af, Depth= 7.57"	Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs	10.0 Direct Entry,
Type III 24-hr 100-yr Rainfall=7.81"	Summary for Subcatchment 22S: A.2
Area (sf) CN Description	
17,818 98 Roofs, HSG A	Runoff = 2.38 cfs @ 12.09 hrs, Volume= 0.201 af, Depth= 7.57"
17,818 100.00% Impervious Area Tc Length Slope Velocity Capacity Description	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-yr Rainfall=7.81"
(min) (feet) (ft/ft) (ft/sec) (cfs)	Area (cf) ON Description
6.0 Direct Entry,	Area (sf) CN Description 12,935 98 Paved parking, HSG A
Summary for Subcatchment 18S: APT. BLDG. C	915 98 Roofs, HSG A
Runoff = 3.06 cfs @ 12.09 hrs, Volume= 0.258 af, Depth= 7.57"	13,850 98 Weighted Average 13,850 100.00% Impervious Area
unoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs	Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
ype III 24-hr 100-yr Rainfall=7.81"	6.0 Direct Entry,
Area (sf) CN Description 17.818 98 Roofs. HSG A	Summary for Subcatchment 23S: A.3
17,818 100.00% Impervious Area	
	Runoff = 1.68 cfs @ 12.09 hrs, Volume= 0.141 af, Depth= 7.57"
Tc Length Slope Velocity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry.	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-yr Rainfall=7.81"
6.0 Direct Entry,	
	Area (sf) CN Description 9.767 98 Paved parking, HSG A
	9.767 98 Paved parking, HSG A

(min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
6.0	(ieet)	(1011)	(11/560)	(015)	Direct Entry,	
			Sumr	nary for S	Subcatchment 24S: A.4	
Runoff	=	0.92 cfs	s@ 12.0	9 hrs, Volu	ume= 0.077 af, Depth= 7.57	n
	/ SCS TR 4-hr 100			CS, Weigh	ted-CN, Time Span= 0.00-72.00 hrs,	dt= 0.05 hrs
Ai	ea (sf)		escription			
	227 5,114		aved park oofs, HSG	ing, HSG A S A	N	
	5,341 5,341		/eighted A 00.00% Im	verage ipervious A	Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
6.0					Direct Entry,	
			Sumr	nary for S	Subcatchment 25S: A.5	
Runoff	=	3.85 cfs	s@ 12.0	9 hrs, Volu	ume= 0.325 af, Depth= 7.57	
	/ SCS TR 4-hr 100			CS, Weigh	ted-CN, Time Span= 0.00-72.00 hrs,	dt= 0.05 hrs
	ea (sf)		escription			
	<u>22,426</u> 22.426			ing, HSG A pervious A		
Тс	Length	Slope	Velocity	Capacity		
<u>(min)</u> 6.0	(feet)	(ft/ft)	(ft/sec)	(cfs)	Direct Entry,	
			Sumr	nary for S	Subcatchment 26S: B.6	
	=	4.90 cfs	s@ 12.0	9 hrs, Volu	ume= 0.356 af, Depth= 4.64	
Runoff				CS Weigh	ted-CN, Time Span= 0.00-72.00 hrs,	dt= 0.05 hrs
	/ SCS TR 4-hr 100			CO, Weigh		

Tyuroo					name her 0 HydroCAI	D Software So	olutions	LLC	Page 130
	Area (of)	CN	Adi	Dece	rintion				
*	Area (sf) 31.146	<u>CN</u> 68	Adj		cription	over, Good, H			
	3,467	98				avement, HS			
	5,477	98			fs, HSG A	,			
	40,090	75	73			age, UI Adju	sted		
	31,146				9% Perviou				
	8,944 3,467				1% Imperv 6% Unconi				
	0,101				0.00000				
	Length	Slop		locity		Descriptio	n		
(min		(ft/f	t) (ft	/sec)	(cfs)				
6.0)					Direct En	try,		
			9	Sumr	nary for	Subcatch	ment 2	27S: A.6	
Runoff	=	2.12	cfs @	12.0	9 hrs, Volu	ume=	0.171	af, Depth=	7.09"
- "							~		
	by SCS 11 24-hr 100				CS, Weigh	nted-CN, Im	ne Spar	i= 0.00-72.0	0 hrs, dt= 0.05 hrs
турсп	124-111 100)−yi i ta	initian-1	.01					
	Area (sf)	CN		ription					
	8,883	98			ing, HSG A				
*	1,619 948	68 98				ood, HSG A ent, HSG A			
	940 1,117	98 98		s, HSG		III, HSG A			
	12,567	94			verage				
	1,619				rvious Area				
	10,948				pervious Ar	rea			
	948		8.66%	o Unco	onnected				
То	Length	Slop	e Ve	locitv	Capacity	Descriptio	n		
(min) (feet)	(ft/f	t) (ft	/sec)	(cfs)				
6.0)					Direct En	try,		
			ę	Sumr	nary for	Subcatch	ment 2	28S: B.1	
							0 201	af, Depth=	5 10"
Runoff	=	4.11	cfs @	12.0	9 hrs, Volu	ume=	0.301	ai, Depui-	5.10
			0		,				
Runoff	by SCS TF	R-20 m	ethod,	UH=S	,				0 hrs, dt= 0.05 hrs
Runoff		R-20 m	ethod,	UH=S	,				
Runoff Type II	by SCS TF I 24-hr 100 Area (sf)	R-20 m D-yr Ra CN	ethod, infall=7	UH=S 7.81" ription	SCS, Weigh	hted-CN, Tim	ne Spar		
Runoff Type II	by SCS TF I 24-hr 100 <u>Area (sf)</u> 30,559	R-20 m 0-yr Ra <u>CN</u> 77	ethod, infall=7 Desci >75%	UH=S 7.81" ription	SCS, Weigh	hted-CN, Tim	ne Spar		
Runoff Type II	by SCS TF I 24-hr 100 <u>Area (sf)</u> 30,559 270	R-20 m 0-yr Ra <u>CN</u> 77 98	ethod, infall=7 Desci >75% Unco	UH=S 7.81" o Grass nnecte	SCS, Weigh s cover, Go	hted-CN, Tim	ne Spar		
Runoff Type II	by SCS TF I 24-hr 100 Area (sf) 30,559 270 30,829	R-20 m 0-yr Ra <u>CN</u> 77	ethod, infall=7 Desci >75% Uncol Weigl	UH=S 7.81" o Grass nnecte hted A	SCS, Weigh s cover, Go ed paveme werage	nted-CN, Tim ood, HSG A ent, HSG A	ne Spar		
Runoff Type II	by SCS TF 24-hr 100 <u>Area (sf)</u> 30,559 270 30,829 30,559	R-20 m 0-yr Ra <u>CN</u> 77 98	ethod, infall=7 <u>Desci</u> >75% <u>Unco</u> Weigl 99.12	UH=S 7.81" Grass nnecte hted A % Per	SCS, Weigh s cover, Go	hted-CN, Tim ood, HSG A ent, HSG A	ne Spar		
Type II	by SCS TF I 24-hr 100 Area (sf) 30,559 270 30,829	R-20 m 0-yr Ra <u>CN</u> 77 98	ethod, infall=7 >75% Unco Weigl 99.12 0.88%	UH=S 7.81" Grass nnecte hted A % Per 6 Impe	SCS, Weigh s cover, Go ed paveme werage rvious Area	nted-CN, Tim ood, HSG A ent, HSG A a a	ne Spar		

Tc Length	nter your company name here} 0-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC	Page 131
(min) (feet)		
6.0	Direct Entry,	
	Summary for Subcatchment 29S: B.2	
Runoff =	2.24 cfs @ 12.09 hrs, Volume= 0.179 af, Depth= 6.97"	
	IR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 h 00-yr Rainfall=7.81"	rs
Area (sf)	CN Description	
* 2,173 1,997	68 >75% Grass cover, Good, HSG A 98 Unconnected pavement, HSG A	
<u>9,211</u> 13,381	98 Paved parking, HSG A 93 Weighted Average	
2,173	16.24% Pervious Area	
11,208 1,997	83.76% Impervious Area 17.82% Unconnected	
1,997		
Tc Length (min) (feet)		
6.0	Direct Entry,	
	Summary for Subcatchment 30S: B.3	
	Summary for Subcatchment 566. D.5	
Runoff =	2.92 cfs @ 12.09 hrs, Volume= 0.243 af, Depth= 7.45"	
	IR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 h 00-yr Rainfall=7.81"	rs
	CN Description	
Area (sf)		
* 731	68 >75% Grass cover, Good, HSG A	
* 731 2,575	98 Unconnected pavement, HSG A	
* 731 2,575 13,754 17,060	98 Unconnected pavement, HSG A 98 Paved parking, HSG A 97 Weighted Average	
* 731 2,575 13,754 17,060 731	 98 Unconnected pavement, HSG A 98 Paved parking, HSG A 97 Weighted Average 4.28% Pervious Area 	
* 731 2,575 13,754 17,060	98 Unconnected pavement, HSG A 98 Paved parking, HSG A 97 Weighted Average	
* 731 2,575 13,754 17,060 731 16,329 2,575	 98 Unconnected pavement, HSG A 98 Paved parking, HSG A 97 Weighted Average 4.28% Pervious Area 95.72% Impervious Area 15.77% Unconnected 	
* 731 2,575 13,754 17,060 731 16,329 2,575 Tc Length (min) (feet)	 98 Unconnected pavement, HSG A 98 Paved parking, HSG A 97 Weighted Average 4.28% Pervious Area 95.72% Impervious Area 15.77% Unconnected n Slope Velocity Capacity Description 	
* 731 2,575 13,754 17,060 731 16,329 2,575 Tc Length	 98 Unconnected pavement, HSG A 98 Paved parking, HSG A 97 Weighted Average 4.28% Pervious Area 95.72% Impervious Area 15.77% Unconnected n Slope Velocity Capacity Description 	
* 731 2,575 13,754 17,060 731 16,329 2,575 Tc Length (min) (feet)	 98 Unconnected pavement, HSG A 98 Paved parking, HSG A 97 Weighted Average 4.28% Pervious Area 95.72% Impervious Area 15.77% Unconnected n Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs) 	
* 731 2,575 13,754 17,060 731 16,329 2,575 Tc Length (min) (feet)	98 Unconnected pavement, HSG A 98 Paved parking, HSG A 97 Weighted Average 4.28% Pervious Area 95.72% Impervious Area 15.77% Unconnected n Slope velocity Capacity Description (ft/ft) (ft/sec) (ft/ft) Direct Entry,	

6842-Post	Type III 24-hr 100-yr Rainfall=7.8	1"
	nter your company name here}	~~
HydroCAD® 10.10	0-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 1	<u>32</u>
A		
Area (sf) * 731	CN Description 68 >75% Grass cover, Good, HSG A	—
2,575	98 Unconnected pavement, HSG A	
13,754	98 Paved parking, HSG A	
17,060 731	97 Weighted Average 4.28% Pervious Area	
16,329	95.72% Impervious Area	
2,575	15.77% Unconnected	
Tc Length	Slope Velocity Capacity Description	
(min) (feet)	(ft/ft) (ft/sec) (cfs)	
6.0	Direct Entry,	
	Summary for Subcatchment 32S: B.5	
Runoff =	3.92 cfs @ 12.09 hrs, Volume= 0.301 af, Depth= 6.38"	
	R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs)0-yr Rainfall=7.81"	
Area (sf)	CN Description	
8,616	98 Paved parking, HSG A	
* 8,034 1,324	68 >75% Grass cover, Good, HSG A 98 Unconnected pavement, HSG A	
6,653	98 Roofs, HSG A	
24,627	88 Weighted Average	_
8,034 16,593	32.62% Pervious Area 67.38% Impervious Area	
1,324	7.98% Unconnected	
To Longth	Slope Velocity Capacity Description	
Tc Length (min) (feet)		
6.0	Direct Entry,	_
	Summary for Subcatchment 33S: B.7	
Runoff =	19.48 cfs @ 12.42 hrs, Volume= 2.454 af, Depth= 4.41"	
	R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs	
Type III 24-hr 10	00-yr Rainfall=7.81"	

			r company name here} 03590 © 2020 HydroCAD Software Solutions LLC	Page 133
A	rea (sf)	CN	Description	
1	29,407	68	>75% Grass cover, Good, HSG A	
	97,286	79	>75% Grass cover, Good, HSG C	
	9,046	89	>75% Grass cover, Good, HSG D	
	27,194 15,779	43 76	Woods, Good, HSG A Woods, Good, HSG C	
	4,399	82	Woods, Good, HSG D	
	1,606	98	Unconnected pavement, HSG A	
	319	98	Unconnected pavement, HSG C	
	5,475	98	Roofs, HSG A	
	90,511 83,111	71	Weighted Average 97.45% Pervious Area	
4	7,400		2.55% Impervious Area	
	1,925		26.01% Unconnected	
	Length	Slop		
(min) 30.0	(feet)	(ft/f	t) (ft/sec) (cfs) Direct Entry,	
00.0			Bricer Entry,	
			Summary for Subcatchment 34S: B.8	
			•	
lunoff	=	2.12	cfs @ 12.09 hrs, Volume= 0.172 af, Depth= 7.2	21"
Runoff			0	
unoff b	y SCS TF	R-20 m	ethod, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs	
unoff b	y SCS TF	R-20 m	0	
unoff b ype III	y SCS TF	R-20 m	ethod, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs	
unoff b ype III	y SCS TF 24-hr 100 <u>rea (sf)</u> 9,724	R-20 m)-yr Ra	ethod, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs nfall=7.81" Description Paved parking, HSG A	
unoff b ype III	y SCS TF 24-hr 100 <u>rea (sf)</u> 9,724 1,396	R-20 m)-yr Ra <u>CN</u> 98 68	ethod, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs nfall=7.81" <u>Description</u> Paved parking, HSG A >75% Grass cover, Good, HSG A	
unoff b ype III	y SCS TF 24-hr 10(<u>rea (sf)</u> 9,724 1,396 1,364	R-20 m D-yr Ra <u>CN</u> 98 68 98	ethod, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs nfall=7.81" Description Paved parking, HSG A >75% Grass cover, Good, HSG A Unconnected pavement, HSG A	
unoff b ype III	y SCS TF 24-hr 100 <u>rea (sf)</u> 9,724 1,396 <u>1,364</u> 12,484	R-20 m)-yr Ra <u>CN</u> 98 68	ethod, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs nfall=7.81" Description Paved parking, HSG A >75% Grass cover, Good, HSG A Unconnected pavement, HSG A Weighted Average	
unoff b ype III	y SCS TF 24-hr 100 9,724 1,396 1,364 12,484 1,396	R-20 m D-yr Ra <u>CN</u> 98 68 98	ethod, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs nfall=7.81" Description Paved parking, HSG A >75% Grass cover, Good, HSG A Unconnected pavement, HSG A Weighted Average 11.18% Pervious Area	
unoff b ype III	y SCS TF 24-hr 100 9,724 1,396 1,364 12,484 1,396 11,088	R-20 m D-yr Ra <u>CN</u> 98 68 98	ethod, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs nfall=7.81" <u>Description</u> Paved parking, HSG A >75% Grass cover, Good, HSG A <u>Unconnected pavement, HSG A</u> Weighted Average 11.18% Pervious Area 88.82% Impervious Area	
unoff b ype III	y SCS TF 24-hr 100 9,724 1,396 1,364 12,484 1,396	R-20 m D-yr Ra <u>CN</u> 98 68 98	ethod, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs nfall=7.81" Description Paved parking, HSG A >75% Grass cover, Good, HSG A Unconnected pavement, HSG A Weighted Average 11.18% Pervious Area	
tunoff b ype III A	y SCS TF 24-hr 100 9,724 1,396 1,364 12,484 1,396 11,088 1,364 Length	R-20 m D-yr Ra 98 68 98 95 Slop	e Velocity Capacity Description	
unoff b ype III A Tc (min)	y SCS TF 24-hr 100 9,724 1,396 1,364 1,364 1,396 11,088 1,364	R-20 m/ D-yr Ra 98 68 98 95	ethod, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs nfall=7.81" Description Paved parking, HSG A >75% Grass cover, Good, HSG A Unconnected pavement, HSG A Weighted Average 11.18% Pervious Area 88.82% Impervious Area 12.30% Unconnected e Velocity Capacity Description c) (ft/sec) (cfs)	
tunoff b ype III A	y SCS TF 24-hr 100 9,724 1,396 1,364 12,484 1,396 11,088 1,364 Length	R-20 m D-yr Ra 98 68 98 95 Slop	e Velocity Capacity Description	
tunoff b ype III A Tc (min)	y SCS TF 24-hr 100 9,724 1,396 1,364 12,484 1,396 11,088 1,364 Length	R-20 m D-yr Ra 98 68 98 95 Slop	ethod, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs nfall=7.81" Description Paved parking, HSG A >75% Grass cover, Good, HSG A Unconnected pavement, HSG A Weighted Average 11.18% Pervious Area 88.82% Impervious Area 12.30% Unconnected e Velocity Capacity Description c) (ft/sec) (cfs)	
Tc (min) 6.0	y SCS TF 24-hr 100 9,724 1,396 1,364 12,484 1,396 11,088 1,364 Length (feet)	R-20 m D-yr Ra 98 68 98 95 Slop (ft/f	ethod, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs nfall=7.81" Description Paved parking, HSG A >75% Grass cover, Good, HSG A Unconnected pavement, HSG A Weighted Average 11.18% Pervious Area 88.82% Impervious Area 12.30% Unconnected e Velocity Capacity Description) (ft/sec) (cfs) Direct Entry, Summary for Subcatchment 35S: C.1	s, dt= 0.05 hrs
Tc (min) 6.0	y SCS TF 24-hr 100 9,724 1,396 1,364 12,484 1,396 11,088 1,364 Length	R-20 m D-yr Ra 98 68 98 95 Slop (ft/f	ethod, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs nfall=7.81" Description Paved parking, HSG A >75% Grass cover, Good, HSG A Unconnected pavement, HSG A Weighted Average 11.18% Pervious Area 88.82% Impervious Area 88.82% Impervious Area 12.30% Unconnected e Velocity Capacity Description c) (ft/sec) (cfs) Direct Entry,	s, dt= 0.05 hrs
Tc (min) 6.0	y SCS TF 24-hr 100 9,724 1,396 12,484 1,396 11,088 1,364 Length (feet) = y SCS TF	R-20 m.)-yr Ra 98 68 98 95 95 Slop (ft/f 21.74 R-20 m	ethod, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs nfall=7.81" Description Paved parking, HSG A >75% Grass cover, Good, HSG A Unconnected pavement, HSG A Weighted Average 11.18% Pervious Area 88.82% Impervious Area 12.30% Unconnected e Velocity Capacity Description c) (ft/sec) (cfs) Direct Entry, Summary for Subcatchment 35S: C.1 cfs @ 12.27 hrs, Volume= 2.306 af, Depth= 5.1 ethod, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs	s, dt= 0.05 hrs
Tc (min) 6.0	y SCS TF 24-hr 100 9,724 1,396 12,484 1,396 11,088 1,364 Length (feet) = y SCS TF	R-20 m.)-yr Ra 98 68 98 95 95 Slop (ft/f 21.74 R-20 m	ethod, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs nfall=7.81" Description Paved parking, HSG A >75% Grass cover, Good, HSG A Unconnected pavement, HSG A Weighted Average 11.18% Pervious Area 88.82% Impervious Area 12.30% Unconnected e Velocity Capacity Description c) (ft/sec) (cfs) Direct Entry, Summary for Subcatchment 35S: C.1 cfs @ 12.27 hrs, Volume= 2.306 af, Depth= 5.1	s, dt= 0.05 hrs
Tc (min) 6.0	y SCS TF 24-hr 100 9,724 1,396 12,484 1,396 11,088 1,364 Length (feet) = y SCS TF	R-20 m.)-yr Ra 98 68 98 95 95 Slop (ft/f 21.74 R-20 m	ethod, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs nfall=7.81" Description Paved parking, HSG A >75% Grass cover, Good, HSG A Unconnected pavement, HSG A Weighted Average 11.18% Pervious Area 88.82% Impervious Area 12.30% Unconnected e Velocity Capacity Description c) (ft/sec) (cfs) Direct Entry, Summary for Subcatchment 35S: C.1 cfs @ 12.27 hrs, Volume= 2.306 af, Depth= 5.1 ethod, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs	s, dt= 0.05 hrs
Tc (min) 6.0	y SCS TF 24-hr 100 9,724 1,396 12,484 1,396 11,088 1,364 Length (feet) = y SCS TF	R-20 m.)-yr Ra 98 68 98 95 95 Slop (ft/f 21.74 R-20 m	ethod, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs nfall=7.81" Description Paved parking, HSG A >75% Grass cover, Good, HSG A Unconnected pavement, HSG A Weighted Average 11.18% Pervious Area 88.82% Impervious Area 12.30% Unconnected e Velocity Capacity Description c) (ft/sec) (cfs) Direct Entry, Summary for Subcatchment 35S: C.1 cfs @ 12.27 hrs, Volume= 2.306 af, Depth= 5.1 ethod, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs	s, dt= 0.05 hrs
Tc (min) 6.0	y SCS TF 24-hr 100 9,724 1,396 12,484 1,396 11,088 1,364 Length (feet) = y SCS TF	R-20 m.)-yr Ra 98 68 98 95 95 Slop (ft/f 21.74 R-20 m	ethod, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs nfall=7.81" Description Paved parking, HSG A >75% Grass cover, Good, HSG A Unconnected pavement, HSG A Weighted Average 11.18% Pervious Area 88.82% Impervious Area 12.30% Unconnected e Velocity Capacity Description c) (ft/sec) (cfs) Direct Entry, Summary for Subcatchment 35S: C.1 cfs @ 12.27 hrs, Volume= 2.306 af, Depth= 5.1 ethod, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs	s, dt= 0.05 hrs
Tc (min) 6.0	y SCS TF 24-hr 100 9,724 1,396 12,484 1,396 11,088 1,364 Length (feet) = y SCS TF	R-20 m.)-yr Ra 98 68 98 95 95 Slop (ft/f 21.74 R-20 m	ethod, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs nfall=7.81" Description Paved parking, HSG A >75% Grass cover, Good, HSG A Unconnected pavement, HSG A Weighted Average 11.18% Pervious Area 88.82% Impervious Area 12.30% Unconnected e Velocity Capacity Description c) (ft/sec) (cfs) Direct Entry, Summary for Subcatchment 35S: C.1 cfs @ 12.27 hrs, Volume= 2.306 af, Depth= 5.1 ethod, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs	s, dt= 0.05 hrs

6842-Post	Type III 24-hr 100-yr Rainfall=7.81" tter your company name here}
	-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 134
Area (sf)	CN Adj Description
* 128,543	68 >75% Grass cover, Good, HSG A
* 69,229 * 16,469	 89 >75% Grass cover, Good, HSG D 82 Woods, Good, HSG D
14,141	98 Unconnected pavement, HSG A
7,926	98 Roofs, HSG A
236,308	78 77 Weighted Average, UI Adjusted
214,241 22,067	90.66% Pervious Area 9.34% Impervious Area
14,141	64.08% Unconnected
Tc Length	Slope Velocity Capacity Description
(min) (feet)	(ft/ft) (ft/sec) (cfs)
20.0	Direct Entry,
	Summary for Subcatchment 36S: C.2
Runoff =	3.77 cfs @ 12.09 hrs, Volume= 0.300 af, Depth= 6.97"
	R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs 0-yr Rainfall=7.81"
Area (sf)	CN Description
12,989	98 Paved parking, HSG A
* 3,687	68 >75% Grass cover, Good, HSG A 98 Unconnected pavement, HSG A
2,989 2,851	98 Unconnected pavement, HSG A 98 Roofs, HSG A
22,516	93 Weighted Average
3,687	16.38% Pervious Area
18,829 2,989	83.62% Impervious Area 15.87% Unconnected
Tc Length	
(min) (feet) 6.0	(ft/ft) (ft/sec) (cfs) Direct Entry,
	Summary for Subcatchment 37S: C.3
Runoff =	1.96 cfs @ 12.09 hrs, Volume= 0.149 af, Depth= 6.26"
	R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs 0-yr Rainfall=7.81"
Area (sf)	CN Description
Area (SI) 5,266	98 Paved parking, HSG A
* 4,754	68 >75% Grass cover, Good, HSG A
509	98 Roofs, HSG A
1,900	98 Roofs, HSG A 87 Weighted Average
4,754	38.25% Pervious Area
7,675	61.75% Impervious Area

6842-Post Prepared by HydroCAD® 10	{ <mark>enter yo</mark>).10-3a_s/n	ur company 03590 © 202	name here	e}) Software \$	Solutions LLC	r 100-yr Rainfa F	Page 135
Tc Leng (min) (fe	gth Sloj et) (ft/		Capacity (cfs)	Descripti	on		
6.0				Direct Er	ntry,		
		Sum	mary for	Subcatch	hment 38S: C.4		
Runoff =	0.80	cfs @ 12.0	9 hrs, Volu	ume=	0.067 af, Depth= 7	. .57"	
Runoff by SCS Type III 24-hr			SCS, Weigh	ited-CN, Ti	ime Span= 0.00-72.00 h	nrs, dt= 0.05 hrs	
Area (s	sf) CN	Description	1				
4,65		Paved park					
4,65	5	100.00% In	npervious A	Area			
Tc Len		be Velocity ft) (ft/sec)	Capacity (cfs)	Descripti	on		
	eu (10						
(min) (fe 6.0	et) (11/			Direct Er	ntry,		
(min) (fe	et) (17	Sum	mary for s		ntry, hment 39S: C.5		
<u>(min) (fe</u> 6.0		Sum cfs @ 12.0	•	Subcatch		7.57 "	
(min) (fe 6.0 Runoff = Runoff by SCS Type III 24-hr	1.01 S TR-20 m 100-yr Ra	cfs @ 12.0 ethod, UH=S ainfall=7.81"	9 hrs, Volu SCS, Weigh	Subcatch ume=	hment 39S: C.5		
(min) (fe 6.0 Runoff = Runoff by SCS	1.01 S TR-20 m 100-yr Ra sf) CN	cfs @ 12.0 ethod, UH=S	9 hrs, Volu SCS, Weigh	Subcatch ume= uted-CN, Ti	hment 39S: C.5 0.085 af, Depth= 7		
(min) (fe 6.0 Runoff = Runoff by SCG Type III 24-hr <u>Area (s</u> 4,08 1,77	1.01 S TR-20 m 100-yr Ra sf) <u>CN</u> 30 98 77 98	cfs @ 12.0 ethod, UH=S ainfall=7.81" Description Paved park Unconnect	9 hrs, Volu SCS, Weigh king, HSG A	Subcatch ume= uted-CN, Ti	hment 39S: C.5 0.085 af, Depth= 7 ime Span= 0.00-72.00 h		
(min) (fe 6.0 Runoff = Runoff by SC3 Type III 24-hr <u>Area (s</u> 4,08	1.01 S TR-20 m 100-yr Ra 50 98 57 98 57 98	cfs @ 12.0 ethod, UH=S ainfall=7.81" <u>Description</u> Paved park	9 hrs, Volu SCS, Weigh ing, HSG A ed pavemen vverage npervious A	Subcatch ume= uted-CN, Ti	hment 39S: C.5 0.085 af, Depth= 7 ime Span= 0.00-72.00 h		
(min) (fe 6.0 Runoff = Runoff by SC3 Type III 24-hr <u>Area (s</u> 4,00 1,77 5,88 5,88 1,77 Tc Len	1.01 S TR-20 m 100-yr Ra 5f) CN 30 98 77 98 57 98 57 77	cfs @ 12.0 ethod, UH=5 ainfall=7.81" Description Paved park Unconnect Weighted <i>A</i> 100.00% Ir 30.34% Un	9 hrs, Volu SCS, Weigh Ling, HSG A ed pavement Average npervious A connected	Subcatch ume= nted-CN, Ti nt, HSG A	hment 39S: C.5 0.085 af, Depth= 7 ime Span= 0.00-72.00 h		
(min) (fe 6.0 Runoff = Runoff by SC3 Type III 24-hr <u>Area (s</u> 4,00 1,77 5,88 5,88 1,77 Tc Lens	1.01 S TR-20 m 100-yr R: 5f) CN 30 98 77 98 57 73 57 98 57 77 98 57 77 98 57 77 57 98 57 77 57	cfs @ 12.0 ethod, UH=5 ainfall=7.81" Description Paved park Unconnect Weighted <i>A</i> 100.00% Ir 30.34% Un	99 hrs, Volu SCS, Weigh ising, HSG A ed pavement Average npervious A connected Capacity	Subcatch ume= nted-CN, Ti nt, HSG A	hment 39S: C.5 0.085 af, Depth= 7 ime Span= 0.00-72.00 h		
(min) (fe 6.0 Runoff = Runoff by SC: Type III 24-hr Area (s 4,06 1,77 5,86 5,85 1,77 Tc Len, (min) (fe	1.01 S TR-20 m 100-yr R: 5f) CN 30 98 77 98 57 73 57 98 57 77 98 57 77 98 57 77 57 98 57 77 57	cfs @ 12.0 ethod, UH=5 ainfall=7.81" Description Paved park Unconnect Weighted A 100.00% In 30.34% Un be Velocity ft) (ft/sec)	99 hrs, Volu SCS, Weigh king, HSG A ed pavemel Werage npervious A connected Capacity (cfs)	Subcatch ume= hted-CN, Ti ht, HSG A hrea Descripti Direct En	hment 39S: C.5 0.085 af, Depth= 7 ime Span= 0.00-72.00 h		
(min) (fe 6.0 Runoff = Runoff by SC: Type III 24-hr Area (s 4,06 1,77 5,86 5,85 1,77 Tc Len, (min) (fe	1.01 S TR-20 m 100-yr Ra 5f) CN 30 98 77 98 57 77 98 57 77 98 57 77 98 57 77 98 57 77 98 57 77 98 57 77 98 57 77 98 57 77 98 57 77 98 57 77 98 57 7 98 57 7 98 57 7 98 57 7 98 57 57 98 57 57 98 57 57 57 57 57 57 57 57 57 57 57 57 57	cfs @ 12.0 ethod, UH=5 ainfall=7.81" Description Paved park Unconnect Weighted A 100.00% In 30.34% Un be Velocity ft) (ft/sec)	99 hrs, Volu SCS, Weigh ing, HSG A ed pavement Average npervious A connected Capacity (cfs) mary for S	Subcatch ume= nted-CN, Ti nt, HSG A Area Description Direct Ei Subcatch	hment 39S: C.5 0.085 af, Depth= 7 ime Span= 0.00-72.00 h	ırs, dt= 0.05 hrs	
(min) (fe 6.0 Runoff = Runoff by SC3 Type III 24-hr <u>Area (s</u> 4.06 1.77 5.88 1.77 Tc Lent (min) (fe 6.0 Runoff =	1.01 S TR-20 m 100-yr R sf) CN 30 98 77 98 57 77 98 57 77 98 57 77 98 57 70 98 57 98 57 70 80 57 77 80 57 77 80 57 70 80 57 77 80 57 77 80 57 77 80 57 70 80 57 70 80 57 70 80 57 70 80 57 70 80 57 77 70 80 57 77 98 57 77 77 77 98 57 77 77 77 77 77 77 77 77 77 77 77 77	cfs @ 12.0 ethod, UH=5 ainfall=7.81" Description Paved park Unconnect Weighted A 100.00% Ir 30.34% Un be Velocity ft) (ft/sec) Sum cfs @ 12.0 ethod, UH=5	99 hrs, Volu SCS, Weigh king, HSG A ed pavemel Average npervious A connected Capacity (cfs) mary for S	Subcatch ume= hted-CN, Ti <u>ht, HSG A</u> Area Description Direct En Subcatch ume=	hment 39S: C.5 0.085 af, Depth= 7 ime Span= 0.00-72.00 h on ntry, hment 40S: C.6	rrs, dt= 0.05 hrs	
(min) (fe 6.0 Runoff = Runoff by SC: Type III 24-hr Area (s 4,06 1,77 5,88 1,77 Tc Len, (min) (fe 6.0 Runoff = Runoff by SC: Type III 24-hr Area (s	1.01 S TR-20 m 100-yr Ra 5f) CN 30 98 77 98 57 98 57 77 gth Sloj (ft/ 0.70 S TR-20 m 100-yr Ra 5f) CN	cfs @ 12.0 ethod, UH=5 ainfall=7.81" Description Paved park Unconnect Weighted A 100.00% In 30.34% Un be Velocity ft) (ft/sec) Summ cfs @ 12.0 ethod, UH=5 ainfall=7.81" Description	99 hrs, Volu SCS, Weigh king, HSG A ed pavemel Average npervious A connected Capacity (cfs) mary for S 99 hrs, Volu SCS, Weigh	Subcatch ume= hted-CN, Ti <u>Ant, HSG A</u> Area Description Direct En Subcatch ume= hted-CN, Ti	hment 39S: C.5 0.085 af, Depth= 7 ime Span= 0.00-72.00 h on ntry, hment 40S: C.6 0.059 af, Depth= 7	rrs, dt= 0.05 hrs	
(min) (fe 6.0 Runoff = Runoff by SC3 Type III 24-hr <u>Area (s</u> 4,08 1,77 5,88 1,77 Tc Len, (min) (fe 6.0 Runoff = Runoff by SC3 Type III 24-hr	1.01 S TR-20 m 100-yr Ra 51 CN 30 98 77 98 57 98 57 77 98 57 77 98 57 77 98 57 77 98 57 77 98 57 70 98 57 98 57 77 98 57 77 98 57 77 85 85 77 85 85 85 85 85 85 85 85 85 85 85 85 85	cfs @ 12.0 ethod, UH=S infall=7.81" <u>Description</u> Paved park <u>Unconnect</u> Weighted A 100.00% In 30.34% Un be Velocity ft) (ft/sec) Sum cfs @ 12.0 ethod, UH=S infall=7.81"	99 hrs, Volu SCS, Weigh ing, HSG A ed pavement werage npervious A connected Capacity (cfs) mary for S 19 hrs, Volu SCS, Weigh ing, HSG A	Subcatch ume= hted-CN, Ti ht, HSG A Area Description Direct En Subcatch ume= hted-CN, Ti	hment 39S: C.5 0.085 af, Depth= 7 ime Span= 0.00-72.00 h on ntry, hment 40S: C.6 0.059 af, Depth= 7	rrs, dt= 0.05 hrs	

Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)		on		
6.0					Direct E	ntry,		
			Sum	mary for	Subcatc	hment 4	1S: C.7	
Runoff	=	1.24 (cfs @ 12.	09 hrs, Vol	ume=	0.104	af, Depth= 7	.57"
			ethod, UH= nfall=7.81"		hted-CN, T	ime Span-	= 0.00-72.00 h	nrs, dt= 0.05 hrs
A	rea (sf)	CN	Description	n				
	6,072			king, HSG	A			
	<u>1,116</u> 7,188	<u>98</u> 98	Roofs, HS Weighted					
	7,188	00		mpervious	Area			
Tc (min)	Length (feet)	Slope (ft/ft		Capacity		ion		
6.0					Direct E	ntry,		
			Sum	mary for	Subcatc	hment 4	2S: C.8	
Type III	24-hr 100 vrea (sf)	2-20 me I-yr Rai CN	cfs @ 12. ethod, UH= nfall=7.81" Description	09 hrs, Vol SCS, Weig n	ume= hted-CN, T	0.111	af, Depth= 7	'.57" hrs, dt= 0.05 hrs
Runoff b Type III	oy SCS TR 24-hr 100 <u>vrea (sf)</u> 7,639	l-20 me l-yr Rai	cfs @ 12. ethod, UH= nfall=7.81" <u>Description</u> Paved par	09 hrs, Vol SCS, Weig n <u>king, HSG</u>	ume= hted-CN, T A	0.111	af, Depth= 7	
Runoff b Type III	y SCS TR 24-hr 100 <u>area (sf)</u> 7,639 7,639 Length	2-20 me I-yr Rai <u>CN</u> 98 Slope	cfs @ 12. ethod, UH= nfall=7.81" <u>Description</u> <u>Paved par</u> 100.00% I e Velocity	09 hrs, Vol SCS, Weig <u>n</u> <u>king, HSG /</u> mpervious / v Capacity	ume= hted-CN, T A Area	0.111 ime Span-	af, Depth= 7	
Runoff b Type III	oy SCS TR 24-hr 100 area (sf) 7,639 7,639	2-20 me I-yr Rai <u>CN</u> 98	cfs @ 12. ethod, UH= nfall=7.81" <u>Description</u> <u>Paved par</u> 100.00% I e Velocity	09 hrs, Vol SCS, Weig <u>n</u> <u>king, HSG /</u> mpervious / v Capacity	ume= hted-CN, T A Area	0.111 ime Span=	af, Depth= 7	
Runoff b Type III	y SCS TR 24-hr 100 <u>area (sf)</u> 7,639 7,639 Length	2-20 me I-yr Rai <u>CN</u> 98 Slope	cfs @ 12. ethod, UH= nfall=7.81" <u>Description</u> <u>Paved par</u> 100.00% I e Velocity .) (ft/sec)	09 hrs, Vol SCS, Weig n king, HSG, mpervious, capacity (cfs)	ume= hted-CN, T Area Descripti Direct E	0.111 ime Span-	af, Depth= 7 = 0.00-72.00 h	
Runoff b Type III	y SCS TR 24-hr 100 <u>area (sf)</u> 7,639 7,639 Length	2-20 me I-yr Rai <u>CN</u> 98 Slope	cfs @ 12. ethod, UH= nfall=7.81" <u>Description</u> <u>Paved par</u> 100.00% I e Velocity .) (ft/sec)	09 hrs, Vol SCS, Weig <u>n</u> <u>king, HSG /</u> mpervious / v Capacity	ume= hted-CN, T Area Descripti Direct E	0.111 ime Span-	af, Depth= 7 = 0.00-72.00 h	
Runoff b Type III	y SCS TR 24-hr 100 <u>area (sf)</u> 7,639 7,639 Length	2-20 me I-yr Rai 98 Slope (ft/ft	cfs @ 12. ethod, UH= nfall=7.81" <u>Description</u> <u>Paved par</u> 100.00% I e Velocity) (ft/sec) Sum	09 hrs, Vol SCS, Weig n king, HSG, mpervious, capacity (cfs)	ume= hted-CN, T Area Descripti Direct E Subcatc	0.111 ime Span= ion ntry, hment 4	af, Depth= 7 = 0.00-72.00 h	nrs, dt= 0.05 hrs
Runoff b Type III	y SCS TR 24-hr 100 <u>7,639</u> 7,639 Length (feet) =	2-20 me -yr Rai <u>CN</u> 98 Slope (ft/ft 1.50 e	cfs @ 12. ethod, UH= nfall=7.81" <u>Description</u> <u>Paved par</u> 100.00% I e Velocity) (ft/sec) Sum cfs @ 12.	09 hrs, Vol SCS, Weig n king, HSG mpervious (Capacity (Cfs) (Cfs) mmary for 09 hrs, Vol SCS, Weig	ume= hted-CN, T Area Descripti Direct E Subcatc ume=	0.111 ime Spans ion ntry, hment 4 0.126	af, Depth= 7 = 0.00-72.00 h 3S: C.9 af, Depth= 7	nrs, dt= 0.05 hrs
Runoff b Type III A Tc (min) 6.0 Runoff Runoff b Type III	y SCS TR 24-hr 100 <u>7,639</u> 7,639 Length (feet) =	2-20 me -yr Rai <u>CN</u> 98 Slope (ft/ft 1.50 e	cfs @ 12. ethod, UH= nfall=7.81" <u>Description</u> <u>Paved par</u> 100.00% I e Velocity) (ft/sec) Sum cfs @ 12. ethod, UH= nfall=7.81" <u>Description</u>	09 hrs, Vol SCS, Weig n king, HSG, mpervious, capacity (cfs) (cfs) mmary for 09 hrs, Vol SCS, Weig n	ume= hted-CN, T Area Descripti Direct E Subcatcl ume= hted-CN, T	0.111 ime Spans ion ntry, hment 4 0.126	af, Depth= 7 = 0.00-72.00 h 3 S: C.9 af, Depth= 7	rrs, dt= 0.05 hrs
Runoff b Type III A 	y SCS TR 24-hr 100 <u>7,639</u> 7,639 Length (feet) = y SCS TR 24-hr 100	2-20 me -yr Rai <u>CN</u> 98 Slope (ft/ft 1.50 c 2-20 me -yr Rai	cfs @ 12. ethod, UH= nfall=7.81" <u>Description</u> <u>Paved par</u> 100.00% I e Velocity) (ft/sec) Sum cfs @ 12. ethod, UH= nfall=7.81" <u>Description</u> <u>Paved par</u>	09 hrs, Vol SCS, Weig n king, HSG , mpervious , cfs) (ume= hted-CN, T Area Descripti Direct E Subcatc ume= hted-CN, T	0.111 ime Spans ion ntry, hment 4 0.126	af, Depth= 7 = 0.00-72.00 h 3 S: C.9 af, Depth= 7	rrs, dt= 0.05 hrs

			r company		e} ጋ Software So			00-yr Rainfall=7.81" Page 137
Тс	Length	Slope	e Velocity	Capacity				Tage 107
(min) 6.0	(feet)	(ft/ft) (ft/sec)	(cfs)	Direct Ent	rv.		
			Sumr	nary for S	Subcatchm	•	C.10	
Runoff	=	0.92 c	ofs @ 12.0	•			Depth= 7.57'	n
D	. 000 TE		0	,		,		
			nfall=7.81	SCS, Weigh	ited-CN, Tim	e Span= 0.	00-72.00 hrs,	dt= 0.05 nrs
Ai	ea (sf)	CN	Description					
	5,326	98	Paved park	ing, HSG A	١			
	5,326		100.00% In	npervious A	Area			
Tc (min)	Length (feet)	Slope (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description	1		
6.0	(1001)	(, (1,000)	(0.0)	Direct Ent	ry,		
			Sumn	nary for S	Subcatchm	ent 45S:	C.11	
Runoff	=	0.45 c	Sum r cfs @ 12.0	•			C.11 Depth= 7.57	n
Runoff by	/ SCS TF	R-20 me	cfs @ 12.0	9 hrs, Volu	ume=	0.038 af,		
Runoff by Type III 2	/ SCS TF	R-20 me)-yr Raii	cfs @ 12.0 thod, UH=S	9 hrs, Volu SCS, Weigh	ume=	0.038 af,	Depth= 7.57	
Type III 2	/ SCS TF 4-hr 100	R-20 me)-yr Raii CN	cfs @ 12.0 ethod, UH=8 nfall=7.81"	9 hrs, Volu SCS, Weigh	ume= ited-CN, Tim	0.038 af,	Depth= 7.57	
Runoff by Type III 2	/ SCS TF 4-hr 100 <u>rea (sf)</u> 1,483 946	R-20 me)-yr Raii <u>CN</u> 98 98	ofs @ 12.0 hthod, UH=S nfall=7.81" <u>Description</u> Paved park Paved park	9 hrs, Volu SCS, Weigh Ling, HSG A	ume= nted-CN, Tim	0.038 af,	Depth= 7.57	
Runoff by Type III 2	/ SCS TF 4-hr 100 <u>ea (sf)</u> 1,483 946 126	R-20 me)-yr Raii <u>CN</u> 98 98 98	ofs @ 12.0 thod, UH=S nfall=7.81" <u>Description</u> Paved park Paved park Unconnect	9 hrs, Volu SCS, Weigh Ling, HSG A Ling, HSG D ed pavemen	ume= nted-CN, Tim	0.038 af,	Depth= 7.57	
Runoff by Type III 2	/ SCS TF 24-hr 100 1,483 946 126 76	R-20 me)-yr Raii 0-yr 8 98 98 98 98 98	ofs @ 12.0 thod, UH=5 nfall=7.81" Description Paved park Paved park Unconnect Unconnect	9 hrs, Volu SCS, Weigh ing, HSG A ing, HSG E ed pavemen ed pavemen	ume= nted-CN, Tim	0.038 af,	Depth= 7.57	
Runoff by Type III 2	/ SCS TF 24-hr 100 1,483 946 126 76 2,631 2,631	R-20 me D-yr Raii 98 98 98 98 98 98 98	ofs @ 12.0 thod, UH=S nfall=7.81" Description Paved park Paved park Unconnect Unconnect Weighted <i>I</i> 100.00% Ir	9 hrs, Volu SCS, Weigh ing, HSG A ing, HSG D ed pavemen d pavemen werage npervious A	ume= tted-CN, Tim) nt, HSG A nt, HSG D	0.038 af,	Depth= 7.57	
Runoff by Type III 2	/ SCS TF 24-hr 100 1,483 946 126 76 2,631	R-20 me D-yr Raii 98 98 98 98 98 98 98	ofs @ 12.0 thod, UH=S nfall=7.81" Description Paved park Paved park Unconnect Unconnect Weighted A	9 hrs, Volu SCS, Weigh ing, HSG A ing, HSG D ed pavemen d pavemen werage npervious A	ume= tted-CN, Tim) nt, HSG A nt, HSG D	0.038 af,	Depth= 7.57	
Runoff by Type III 2	/ SCS TF 24-hr 100 1,483 946 126 76 2,631 2,631	R-20 me D-yr Raii 98 98 98 98 98 98 98	cfs @ 12.0 thod, UH=S nfall=7.81" Description Paved park Paved park Unconnect Unconnect Unconnect Unconnect Check Neighted A 100.00% In 7.68% Unc	9 hrs, Volu SCS, Weigh ing, HSG A ing, HSG D ed pavemen ed pavemen werage npervious A onnected	ume= tted-CN, Tim) nt, HSG A nt, HSG D	0.038 af, e Span= 0.	Depth= 7.57	
Runoff by Type III 2 <u>Ar</u> Tc	x SCS TF 4-hr 100 1,483 946 126 76 2,631 2,631 202 Length	R-20 me D-yr Rain 98 98 98 98 98 98 98	cfs @ 12.0 thod, UH=S nfall=7.81" Description Paved park Paved park Unconnect Unconnect Unconnect Unconnect Check Neighted A 100.00% In 7.68% Unc	9 hrs, Volu SCS, Weigh ing, HSG A ing, HSG D ed pavemer ed pavemer ad pavemer d paveme	ume= ted-CN, Tim A D nt, HSG A nt, HSG D trea	0.038 af, e Span= 0.	Depth= 7.57	

HvdroCA		3a s/n	03590 @ 20	y name here 20 HydroCAE		olutions LLC		Pag
IlyulooA	00 10.10-	0a 3/11	00000 @20					ı ay
A	rea (sf)	CN	Descriptio	n				
	2,144	98		king, HSG A				
	2,121	98		king, HSG D				
	853	98		ted paveme				
	696 96	98		ted paveme	nt, HSG D			
	5,910	98 98	Roofs, HS Weighted					
	5,910	90		mpervious A	rea			
	1,549			nconnected	lica			
	.,							
	Length	Slop		Capacity	Descriptior	า		
<u>(min)</u>	(feet)	(ft/1	ft) (ft/sec) (cfs)				
6.0					Direct Ent	ry,		
			Sum	mary for S	Subcatchn	nent 47S: C	.13	
Runoff	=	0.34	cfs @ 12.	09 hrs, Volu	ıme=	0.029 af, De	epth= 7.57"	
			-					
Runoff h								
				SCS, Weigh	ited-CN, Tim	ie Span= 0.00	-72.00 hrs, at=	0.05 nrs
			ethod, UH= ainfall=7.81"		ited-CN, Tim	ie Span= 0.00	-72.00 hrs, at=	0.05 ms
Type III 2	24-hr 100)-yr Ra	ainfall=7.81"	_	ited-CN, Tim	ie Span= 0.00	-72.00 Mrs, at=	0.05 hrs
Type III 2	24-hr 100 .rea (sf))-yr Ra <u>CN</u>	infall=7.81" Descriptio	n		ie Span= 0.00	-72.00 hrs, dt=	0.05 ms
Type III 2	24-hr 100 . <u>rea (sf)</u> 1,832)-yr Ra <u>CN</u> 98	infall=7.81" <u>Descriptio</u> Paved par	n king, HSG D)	ie Span= 0.00	-72.00 hrs, dt=	0.05 hrs
Type III 2	24-hr 100 .rea (sf))-yr Ra <u>CN</u>	infall=7.81" <u>Descriptio</u> Paved par	n king, HSG E ted paveme)	le Span= 0.00	-72.00 hrs, dt=	0.05 ms
Type III 2	24-hr 100 . <u>rea (sf)</u> 1,832 155)-yr Ra <u>CN</u> 98 98	ainfall=7.81" Descriptio Paved par Unconnec Weighted	n king, HSG E ted paveme) nt, HSG D	e Span= 0.00	-72.00 hrs, dt=	0.05 ms
Type III 2	24-hr 100 <u>rea (sf)</u> 1,832 <u>155</u> 1,987)-yr Ra <u>CN</u> 98 98	ainfall=7.81" Descriptio Paved par Unconnec Weighted 100.00% I	n king, HSG E ted pavemer Average) nt, HSG D	e Span= 0.00	-12.00 ms, at=	0.05 ms
Type III 2	24-hr 100 <u>.rea (sf)</u> 1,832 <u>155</u> 1,987 1,987 155)-yr Ra <u>CN</u> 98 98 98	ainfall=7.81" <u>Descriptio</u> Paved par <u>Unconnec</u> Weighted 100.00% I 7.80% Un	n king, HSG E ted pavemen Average mpervious A connected) nt, HSG D vrea		-12.00 ms, at=	0.05 ms
Type III 2 A	24-hr 100 <u>rea (sf)</u> 1,832 <u>155</u> 1,987 1,987 155 Length)-yr Ra <u>CN</u> 98 98 98 Slop	hinfall=7.81" <u>Descriptio</u> Paved par <u>Unconnec</u> Weighted 100.00% I 7.80% Un pe Velocity	n king, HSG E ted pavemen Average mpervious A connected / Capacity) nt, HSG D vrea		-12.00 ms, at=	0.05 ms
Type III 2	24-hr 100 <u>.rea (sf)</u> 1,832 <u>155</u> 1,987 1,987 155)-yr Ra <u>CN</u> 98 98 98	hinfall=7.81" <u>Descriptio</u> Paved par <u>Unconnec</u> Weighted 100.00% I 7.80% Un pe Velocity	n king, HSG E ted pavemen Average mpervious A connected / Capacity) nt, HSG D vrea Descriptior	1	-12.00 Hrs, at=	0.05 ms
Type III 2 A 	24-hr 100 <u>rea (sf)</u> 1,832 <u>155</u> 1,987 1,987 155 Length)-yr Ra <u>CN</u> 98 98 98 Slop	hinfall=7.81" <u>Descriptio</u> Paved par <u>Unconnec</u> Weighted 100.00% I 7.80% Un pe Velocity	n king, HSG E ted pavemen Average mpervious A connected / Capacity) nt, HSG D vrea	1	-12.00 hrs, at=	0.05 ms
Type III 2 A 	24-hr 100 <u>rea (sf)</u> 1,832 <u>155</u> 1,987 1,987 155 Length)-yr Ra <u>CN</u> 98 98 98 Slop	infall=7.81" <u>Descriptio</u> Paved par <u>Unconnec</u> Weighted 100.00% I 7.80% Un <u>De</u> Velocity (ft/sec	n king, HSG E ted pavemen Average mpervious A connected / Capacity) (cfs)) nt, HSG D vrea Descriptior Direct Ent	1		0.05 ms
Type III 2 A 	24-hr 100 <u>rea (sf)</u> 1,832 <u>155</u> 1,987 1,987 155 Length)-yr Ra 98 98 98 98 Slop (ft/l	infall=7.81" <u>Descriptio</u> Paved par <u>Unconnec</u> Weighted 100.00% I 7.80% Un be Velocity ft) (ft/sec Sum	n king, HSG E ted pavemen Average mpervious A connected / Capacity) (cfs)) nt, HSG D vrea Descriptior Direct Ent Subcatchn	יז זע,	.14	
Type III : A 	24-hr 100 rea (sf) 1,832 155 1,987 1,987 1,987 155 Length (feet)	0-yr Ra <u>CN</u> 98 98 98 Slop (ft/f	infall=7.81" <u>Descriptio</u> Paved par <u>Unconnec</u> Weighted 100.00% II 7.80% Un pe Velocity ft) (ft/sec Sum cfs @ 12.	n king, HSG E ted pavemen Average mpervious A connected (Capacity (Cfs) (cfs) mary for S) nt, HSG D vrea Descriptior Direct Ent Subcatchn	ry, nent 48S: C 0.027 af, Do	.14	
Type III 2 A 	24-hr 100 <u>rea (sf)</u> 1,832 <u>155</u> 1,987 1,987 155 Length (feet) = y SCS TR	0-yr Ra <u>CN</u> 98 98 98 Slop (ft/1 0.32 2-20 m	infall=7.81" <u>Descriptio</u> Paved par <u>Unconnec</u> Weighted 100.00% II 7.80% Un pe Velocity ft) (ft/sec Sum cfs @ 12.	n king, HSG E ted pavemen Average mpervious A connected (Capacity (Cfs) (cfs) mary for S 09 hrs, Volu SCS, Weigh) nt, HSG D vrea Descriptior Direct Ent Subcatchn	ry, nent 48S: C 0.027 af, Do	.14	
Type III 2 A Tc (min) 6.0 Runoff Runoff b Type III 2	24-hr 100 rea (sf) 1,832 155 1,987 1,987 155 Length (feet) = y SCS TR 24-hr 100 rea (sf))-yr Ra <u>CN</u> 98 98 98 98 98 98 0.32 0.32 0.32 R-20 m 0-yr Ra <u>CN</u>	infall=7.81" <u>Descriptio</u> Paved par <u>Unconnec</u> Weighted 100.00% II 7.80% Un pe Velocity ft) (ft/sec Sum cfs @ 12. ethod, UH= infall=7.81" <u>Descriptio</u>	n king, HSG E ted pavemen Average mpervious A connected (Capacity (Cfs) (cfs) mary for S 09 hrs, Volu SCS, Weigh n) nt, HSG D Vrea Description Direct Ent Subcatchn ume= uted-CN, Tim	ry, nent 48S: C 0.027 af, Do	.14	
Type III 2 A Tc (min) 6.0 Runoff Runoff b Type III 2	24-hr 100 rea (sf) 1,832 155 1,987 1,987 155 Length (feet) 9 SCS TR 24-hr 100 rea (sf) 1,744)-yr Ra <u>CN</u> 98 98 98 98 Slop (ft/f 0.32 3-20 m)-yr Ra <u>CN</u> 98	infall=7.81" <u>Descriptio</u> Paved par <u>Unconnec</u> Weighted 100.00% I 7.80% Un be Velocity ft) (ft/sec Sum cfs @ 12. uethod, UH= ainfall=7.81" <u>Descriptio</u> Paved par	n king, HSG E ted pavemen Average mpervious A connected / Capacity) (cfs) mary for S 09 hrs, Volu SCS, Weigh n king, HSG E) nt, HSG D Description Direct Ent Subcatchn ume= uted-CN, Tim	ry, nent 48S: C 0.027 af, Do	.14	
Type III 2 A Tc (min) 6.0 Runoff Runoff b Type III 2	24-hr 100 rea (sf) 1,832 155 1,987 1,987 155 Length (feet) y SCS TR 24-hr 100 rea (sf) 1,744 141)-yr Ra <u>CN</u> 98 98 98 98 98 0.32 CN 98 98 98	infall=7.81" Descriptio Paved par Unconnec Weighted 100.00% I 7.80% Un be Velocity ft) (ft/sec Sum cfs @ 12. bethod, UH= ainfall=7.81" Descriptio Paved par Unconnec	n king, HSG E ted pavemen Average mpervious A connected (Capacity) (cfs) mary for S 09 hrs, Volu SCS, Weigh n king, HSG E ted pavemen) nt, HSG D Description Direct Ent Subcatchn ume= uted-CN, Tim	ry, nent 48S: C 0.027 af, Do	.14	
Type III 2 A Tc (min) 6.0 Runoff Runoff b Type III 2	24-hr 100 rea (sf) 1,832 155 1,987 1,987 155 Length (feet) 9 SCS TR 24-hr 100 rea (sf) 1,744)-yr Ra <u>CN</u> 98 98 98 98 Slop (ft/f 0.32 3-20 m)-yr Ra <u>CN</u> 98	infall=7.81" <u>Descriptio</u> Paved par <u>Unconnec</u> Weighted 100.00% I 7.80% Un be Velocity ft) (ft/sec Sum cfs @ 12. ethod, UH= ainfall=7.81" <u>Descriptio</u> Paved par	n king, HSG E ted pavemen Average mpervious A connected (Capacity) (cfs) mary for S 09 hrs, Volu SCS, Weigh n king, HSG E ted pavemen) nt, HSG D Vrea Description Direct Ent Subcatchn ume= ted-CN, Tim	ry, nent 48S: C 0.027 af, Do	.14	

6842-Post

Type III 24-hr 100-yr Rainfall=7.81"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-yr Rainfall=7.81"

(min)	Length (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)	
6.0	(ieet)	Direct Entry,	
		Summary for Subcatchment 49S: C.15	
Runoff	=	0.60 cfs @ 12.09 hrs, Volume= 0.051 af, Depth= 7.57"	
		R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0. 0-yr Rainfall=7.81"	05 hrs
A	rea (sf)	CN Description	
	3,220 267	98 Paved parking, HSG D 98 Unconnected pavement, HSG D	
	3,487 3,487 267	98 Weighted Average 100.00% Impervious Area 7.66% Unconnected	
Tc (min)	Length (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)	
6.0		Direct Entry,	
		Summary for Subcatchment 50S: C.16	
Runoff	=	0.60 cfs @ 12.09 hrs, Volume= 0.051 af, Depth= 7.57"	
Runoff b		R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0. D-yr Rainfall=7.81"	05 hrs
А	rea (sf)	CN Description	
	3,238 270	98 Paved parking, HSG D 98 Unconnected pavement, HSG D	
	3,508 3,508 270	98 Weighted Average 100.00% Impervious Area 7.70% Unconnected	
	Length (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)	
Tc (min)		Direct Entry,	
(min)		Summary for Subcatchment 51S: D.1	
(min)	=	Summary for Subcatchment 51S: D.1 23.60 cfs @ 12.29 hrs, Volume= 2.543 af, Depth= 3.30"	

epared by {en droCAD® 10.10-	-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 1
<u>Area (sf)</u> 1,527	CN Description 98 Unconnected pavement, HSG A
182,934	68 >75% Grass cover, Good, HSG A
518	79 >75% Grass cover, Good, HSG B
51,440 160,796	89 >75% Grass cover, Good, HSG D 43 Woods, Good, HSG A
5,106	65 Woods, Good, HSG B
450	82 Woods, Good, HSG D
402,771 401,244	61 Weighted Average 99.62% Pervious Area
1,527	0.38% Impervious Area
1,527	100.00% Unconnected
Tc Length	Slope Velocity Capacity Description
(min) (feet)	(ft/ft) (ft/sec) (cfs)
20.0	Direct Entry,
	Summary for Subcatchment 52S: B.9
inoff =	2.49 cfs @ 12.09 hrs, Volume= 0.197 af, Depth= 6.86"
<i>"</i>	
no III 21-hr 100	R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
pe III 24-hr 100	-20 method, 0H=3C3, Weighted-CN, Time Span= 0.00-72.00 ms, dt= 0.03 ms
Area (sf)	0-yr Rainfall=7.81" CN Description
<u>Area (sf)</u> 10,973	0-yr Rainfall=7.81" <u>CN</u> Description 98 Paved parking, HSG A
<u>Area (sf)</u> 10,973 2,895	0-yr Rainfall=7.81" CN Description
Area (sf) 10,973 2,895 1,150 15,018	0-yr Rainfall=7.81" <u>CN</u> Description 98 Paved parking, HSG A 68 >75% Grass cover, Good, HSG A 98 Unconnected pavement, HSG A 92 Weighted Average
Area (sf) 10,973 2,895 1,150 15,018 2,895	0-yr Rainfall=7.81" CN Description 98 Paved parking, HSG A 68 >75% Grass cover, Good, HSG A 98 Unconnected pavement, HSG A 92 Weighted Average 19.28% Pervious Area
Area (sf) 10,973 2,895 1,150 15,018 2,895 12,123	0-yr Rainfall=7.81" CN Description 98 Paved parking, HSG A 68 >75% Grass cover, Good, HSG A 98 Unconnected pavement, HSG A 92 Weighted Average 19.28% Pervious Area 80.72% Impervious Area
Area (sf) 10,973 2,895 1,150 15,018 2,895 12,123 1,150	0-yr Rainfall=7.81" <u>CN</u> Description 98 Paved parking, HSG A 98 Paved parking, HSG A 98 Unconnected pavement, HSG A 92 Weighted Average 19.28% Pervious Area 80.72% Impervious Area 9.49% Unconnected
Area (sf) 10,973 2,895 1,150 15,018 2,895 12,123 1,150 Tc Length	0-yr Rainfall=7.81" <u>CN</u> Description 98 Paved parking, HSG A 68 >75% Grass cover, Good, HSG A 98 Unconnected pavement, HSG A 92 Weighted Average 19.28% Pervious Area 80.72% Impervious Area 9.49% Unconnected Slope Velocity Capacity Description
Area (sf) 10,973 2,895 1,150 15,018 2,895 12,123 1,150 Tc Length	0-yr Rainfall=7.81" <u>CN</u> Description 98 Paved parking, HSG A 98 Paved parking, HSG A 98 Unconnected pavement, HSG A 92 Weighted Average 19.28% Pervious Area 80.72% Impervious Area 9.49% Unconnected
Area (sf) 10,973 2,895 1,150 15,018 2,895 12,123 1,150 Tc Length (min) (feet) 6.0	0-yr Rainfall=7.81" <u>CN</u> Description 98 Paved parking, HSG A 68 >75% Grass cover, Good, HSG A 98 Unconnected pavement, HSG A 92 Weighted Average 19.28% Pervious Area 80.72% Impervious Area 9.49% Unconnected Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)
Area (sf) 10,973 2,895 1,150 15,018 2,895 12,123 1,150 Tc Length (min) (feet) 6.0	0-yr Rainfall=7.81" CN Description 98 Paved parking, HSG A 68 >75% Grass cover, Good, HSG A 98 Unconnected pavement, HSG A 92 Weighted Average 19.28% Pervious Area 80.72% Impervious Area 9.49% Unconnected Slope Velocity Capacity Description (ft/ft) (ft/sec) 0/ft Direct Entry, Summary for Pond 4P: Constructed Stormwater Wetland #2 2.341 ac, 79.77% Impervious, Inflow Depth = 6.08"
Area (sf) 10,973 2,895 1,150 15,018 2,895 12,123 1,150 Tc Length (min) (feet) 6.0 State of the state of the sta	0-yr Rainfall=7.81" CN Description 98 Paved parking, HSG A 68 >75% Grass cover, Good, HSG A 98 Unconnected pavement, HSG A 92 Weighted Average 19.28% Pervious Area 80.72% Impervious Area 9.49% Unconnected Slope Velocity Gapacity Description (ft/ft) (ft/sec) (cfs) Direct Entry, Summary for Pond 4P: Constructed Stormwater Wetland #2 2.341 ac, 79.77% Impervious, Inflow Depth = 6.08" 15.95 cfs @ 12.09 hrs, Volume= 1.187 af
Area (sf) 10,973 2,895 1,150 15,018 2,895 12,123 1,150 Tc Length (min) (feet) 6.0 Now Area = Now = 100w =	0-yr Rainfall=7.81" CN Description 98 Paved parking, HSG A 68 >75% Grass cover, Good, HSG A 98 Unconnected pavement, HSG A 92 Weighted Average 19.28% Pervious Area 80.72% Impervious Area 9.49% Unconnected Slope Velocity Capacity Description (ft/ft) (ft/sec) 0/ft Direct Entry, Summary for Pond 4P: Constructed Stormwater Wetland #2 2.341 ac, 79.77% Impervious, Inflow Depth = 6.08"
Area (sf) 10,973 2,895 1,150 15,018 2,895 12,123 1,150 Tc Length (min) (feet) 6.0 State of the state of the sta	0-yr Rainfall=7.81" CN Description 98 Paved parking, HSG A 68 >75% Grass cover, Good, HSG A 98 Unconnected pavement, HSG A 92 Weighted Average 19.28% Pervious Area 80.72% Impervious Area 9.49% Unconnected Slope Velocity Capacity Description (ft/ft) (cfs) Direct Entry, Summary for Pond 4P: Constructed Stormwater Wetland #2 2.341 ac, 79.77% Impervious, Inflow Depth = 6.08" for 100-yr event 15.95 cfs @ 12.09 hrs, Volume= 1.187 af 6.51 cfs @ 12.32 hrs, Volume= 1.185 af, Atten= 59%, Lag= 14.0 min
Area (sf) 10,973 2,895 1,150 15,018 2,895 12,123 1,150 Tc Length (min) (feet) 6.0 Iow Area = Iow = Io	0-yr Rainfall=7.81" CN Description 98 Paved parking, HSG A 68 >75% Grass cover, Good, HSG A 98 Unconnected pavement, HSG A 92 Weighted Average 19.28% Pervious Area 80.72% Impervious Area 9.27% Unconnected Slope Velocity Capacity Description (ft/ft) (ft/sec) (ft/ft) (ft/sec) 80 Direct Entry, Summary for Pond 4P: Constructed Stormwater Wetland #2 2.341 ac, 79.77% Impervious, Inflow Depth = 6.08" for 100-yr event 15.95 cfs @ 12.09 hrs, Volume= 1.187 af 6.51 cfs @ 12.32 hrs, Volume= 1.185 af nd method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Area (sf) 10,973 2,895 1,150 15,018 2,895 12,123 1,150 Tc Length (min) (feet) 6.0 Cow Area = low = tiflow = tiflow = tiflow = timary = buting by Stor-Ir tak Elev= 215.1 ug-Flow detenti	0-yr Rainfall=7.81" CN Description 98 Paved parking, HSG A 98 Unconnected pavement, HSG A 99 Weighted Average 19.28% Pervious Area 80.72% Impervious Area 9.49% Unconnected Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs) Direct Entry, Summary for Pond 4P: Constructed Stormwater Wetland #2 2.341 ac, 79.77% Impervious, Inflow Depth = 6.08" for 100-yr event 15.95 cfs @ 12.09 hrs, Volume= 1.187 af 6.51 cfs @ 12.32 hrs, Volume= 1.185 af, Atten= 59%, Lag= 14.0 min 6.51 cfs @ 12.32 hrs, Volume= 1.185 af nd method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs 11'@ 12.32 hrs Surf.Area= 10,116 sf Storage= 21,459 cf ion time= 256.8 min calculated for 1.185 af (100% of inflow)

Page 14	lutions LLC	ydroCAD Software So		your com s/n 03590		HydroCA
	1	Storage Descriptio	Storage	Δναί	Inver	Volume
below (Recalc)		Custom Stage Da	1,125 cf		212.50	#1
	u (megulu) ziele	oustoin oluge bu	1,120 01	Ū	212.00	<i>"</i> .
Wet.Area	Cum.Store	Inc.Store	Perim.	urf.Area		Elevatio
(sq-ft)	(cubic-feet)		(feet)	(sq-ft)	/	(fee
6,500	0	0	322.0	6,500		212.5
8,737 14,695	11,187 31,125	11,187 19,938	362.0 453.0	8,459 11,559		214.0 216.0
14,035	51,125	19,900	400.0	11,000	50	210.0
		et Devices	ert Outle	Inve	Routing	Device
		long x 12.0' brea		215.5	Primary	#1
		d (feet) 0.20 0.40				
2.07 2.06 2.04 2 End Contraction(s)		f. (English) 2.57 2.0		214.5	Device 3	#2
		" Round Culvert		214.0	Primary	#3
e= 0.900	ng, no headwall, I	11.0' CPP, projecti	L= 1		,	
.0186 '/' Cc= 0.900	.50'/210.44' S=	/ Outlet Invert= 212	Inlet			
to weir flow at low heads		.013, Flow Area= 1		212.5	Device 3	#4
I to well now at low neaus	C-0.000 Limite	vent. Onnice/Grate	4.0	212.0	Device 3	#4
		r (Controls 0.00 cfs)		d Rectang		—1=Br
		r (Controls 0.00 cfs)	56 cfs @ ngular W	d Rectang Controls 6. sted Recta	oad-Creste Ivert (Inlet Sharp-Cre	1=Br 3=Cu -2=
	ofs potential flow)	r (Controls 0.00 cfs) 5.35 fps) /eir (Passes < 5.97 (56 cfs @ ngular W s < 0.66 c	d Rectang Controls 6. sted Recta	oad-Creste Ivert (Inlet Sharp-Cre	1=Br 3=Cu -2=
100-yr event	ofs potential flow) : Wet Basin epth = 5.39" fo	r (Controls 0.00 cfs) 5.35 fps) Jeir (Passes < 5.97 fs potential flow) hary for Pond 5P mpervious, Inflow [56 cfs @ ingular W s < 0.66 c Summ 31.40% I	d Rectang Controls 6. sted Recta te (Passes 7.170 ac,	road-Creste ulvert (Inlet Sharp-Cre Orifice/Gra rea =	Inflow A
100-yr event 50%, Lag= 20.4 min	ofs potential flow) : Wet Basin epth = 5.39" fo 3.219 af	r (Controls 0.00 cfs) 5.35 fps) Jeir (Passes < 5.97 f fs potential flow) nary for Pond 5P	56 cfs @ ngular W s < 0.66 c Summ 31.40% I 12.24 h	d Rectang Controls 6. sted Recta te (Passes 7.170 ac, 7.65 cfs @	road-Creste ulvert (Inlet Sharp-Cre Orifice/Gra rea = = 2	1=Br 3=Cu 2= 4=
,	ofs potential flow) : Wet Basin epth = 5.39" fo 3.219 af	r (Controls 0.00 cfs) 5.35 fps) /eir (Passes < 5.97 fs potential flow) hary for Pond 5P mpervious, Inflow E rs, Volume=	56 cfs @ ngular W s < 0.66 c Summ 31.40% I 12.24 h 12.58 h	d Rectang Controls 6. sted Recta te (Passes 7.170 ac, 7.65 cfs @ 3.77 cfs @	road-Creste Jivert (Inlet =Sharp-Cre =Orifice/Gra rea = = 2 = 1	Inflow A
,	efs potential flow) : Wet Basin epth = 5.39" fo 3.219 af 3.219 af, Atten= 3.219 af = 0.05 hrs	r (Controls 0.00 cfs) 5.35 fps) /eir (Passes < 5.97 fs potential flow) hary for Pond 5P mpervious, Inflow E rs, Volume= rs, Volume=	56 cfs @ ngular W s < 0.66 c Summ 31.40% I 12.24 h 12.58 h 12.58 h me Span	d Rectang Controls 6. sted Recta te (Passes 7.170 ac, 7.65 cfs @ 3.77 cfs @ method, Ti	road-Creste Jivert (Inlet =Sharp-Cre =Orifice/Gra rea = = 2 = 1 = 1 by Stor-Ind	Inflow A Inflow A Inflow Outflow Primary Routing
,	ofs potential flow) : Wet Basin epth = 5.39" for 3.219 af, Atten= 3.219 af, Atten= 3.219 af 5.005 hrs prage= 30,936 cf	r (Controls 0.00 cfs) 5.35 fps) /eir (Passes < 5.97 of fs potential flow) hary for Pond 5P mpervious, Inflow E rs, Volume= rs, Volume= rs, Volume= = 0.00-72.00 hrs, dt	56 cfs @ ngular W s < 0.66 c Summ 31.40% I 12.24 h 12.25 h 12.58 h 12.58 h me Span rs Surf. <i>F</i>	d Rectang Controls 6. sted Recta te (Passes 7.170 ac, 7.65 cfs @ 3.77 cfs @ 3.77 cfs @ method, Ti @ 12.58 h time= 28.1	oad-Creste Jivert (Inlet =Sharp-Cre =Orifice/Gra = 2 = 1 = 1 by Stor-Ind ev= 216.35'	Inflow A Inflow A Inflow Outflow Primary Routing Peak Ele Plug-Flc
,	efs potential flow) : Wet Basin epth = 5.39" fo 3.219 af 3.219 af, Atten= 3.219 af = 0.05 hrs prage= 30,936 cf 100% of inflow)	r (Controls 0.00 cfs) 5.35 fps) /eir (Passes < 5.97 of fs potential flow) hary for Pond 5P mpervious, Inflow E rs, Volume= rs, Volume= rs, Volume= = 0.00-72.00 hrs, dt Area= 16,891 sf Str sulated for 3.217 af (8.4 - 800.3)	56 cfs @ ngular W s < 0.66 c Summ 31.40% I 12.24 h 12.58 h 12.58 h me Span rs Surf. <i>F</i> I min calc 2 min (82	d Rectang Controls 6. sted Recta te (Passes 7.170 ac, 7.65 cfs @ 3.77 cfs @ 3.77 cfs @ method, Ti @ 12.58 h time= 28.1 time= 28.2	rea = = 2 = 1 = 1 = 1 by Stor-Ind ev= 216.35' bw detentior of-Mass det	Inflow A Inflow A Inflow Outflow Primary Routing Peak Eld Plug-Flo Center-o
50%, Lag= 20.4 min	efs potential flow) : Wet Basin epth = 5.39" fo 3.219 af 3.219 af, Atten= 3.219 af 5.219 a	r (Controls 0.00 cfs) 5.35 fps) (keir (Passes < 5.97 cfs potential flow) hary for Pond 5P mpervious, Inflow E rs, Volume= rs, Volume= e 0.00-72.00 hrs, dt: Area= 16,891 sf Sta culated for 3.217 af (8.4 - 800.3) Storage Descriptio	56 cfs @ ngular W s < 0.66 c Summ 31.40% I 12.24 h 12.58 h 13.58 h	d Rectang Controls 6. sted Recta te (Passes 7.170 ac, 7.65 cfs @ 3.77 cfs @ 3.77 cfs @ method, Ti @ 12.58 h time= 28.1 time= 28.2 : Avail.	rea = = 2 = 1 = 1 = 1 by Stor-Ind ev= 216.35' w detentior of-Mass det	Inflow A Inflow A Inflow Outflow Primary Routing Peak Eld Plug-Flc Center-o
50%, Lag= 20.4 min	efs potential flow) : Wet Basin epth = 5.39" fo 3.219 af 3.219 af, Atten= 3.219 af 5.219 a	r (Controls 0.00 cfs) 5.35 fps) /eir (Passes < 5.97 of fs potential flow) hary for Pond 5P mpervious, Inflow E rs, Volume= rs, Volume= rs, Volume= = 0.00-72.00 hrs, dt Area= 16,891 sf Sto sulated for 3.217 af (8.4 - 800.3) Storage Descriptio	56 cfs @ ngular W s < 0.66 c Summ 31.40% I 12.24 h 12.58 h 12.58 h me Span rs Surf. <i>F</i> I min calc 2 min (82	d Rectang Controls 6. sted Recta te (Passes 7.170 ac, 7.65 cfs @ 3.77 cfs @ 3.77 cfs @ method, Ti @ 12.58 h time= 28.1 time= 28.2 : Avail.	rea = = 2 = 1 = 1 = 1 by Stor-Ind ev= 216.35' bw detentior of-Mass det	Inflow A Inflow A Inflow Outflow Primary Routing Peak Eld Plug-Flc Center-c Volume
50%, Lag= 20.4 min below (Recalc) Wet.Area	efs potential flow) : Wet Basin epth = 5.39" fo 3.219 af 3.219 af, Atten= 3.219 af = 0.05 hrs brage= 30,936 cf 100% of inflow) h ta (Irregular)Listed Cum.Store	r (Controls 0.00 cfs) 5.35 fps) /eir (Passes < 5.97 of fs potential flow) hary for Pond 5P mpervious, Inflow E rs, Volume= rs, Volume= rs, Volume= = 0.00-72.00 hrs, dt: Area= 16,891 sf State ulated for 3.217 af (8.4 - 800.3) Storage Descriptio Custom Stage Da Inc.Store	56 cfs @ ngular W s < 0.66 c Summ 31.40% I 12.24 h 12.58 h 13.58 h 12.58 h	d Rectang Controls 6. sted Recta te (Passes 7.170 ac, 7.65 cfs @ 3.77 cfs @ 3.77 cfs @ 3.77 cfs @ method, Ti @ 12.58 hi time= 28.1 time= 28.2 <u>Avail.</u> 10: urf.Area	rea = = 2 = 1 = 1 = 1 by Stor-Ind ev= 216.35' bw detentior of-Mass det <u>Inver</u> 214.00 bn S	Inflow A Inflow A Inflow Outflow Primary Routing Peak Elev Plug-Flo Center-o <u>Volume</u> #1
50%, Lag= 20.4 min below (Recalc) Wet.Area (sq-ft)	cfs potential flow) : Wet Basin epth = 5.39" fo 3.219 af 3.219 af, Atten= 3.219 af, Atten= 3.219 af 100% of inflow) n ta (Irregular)Listed Cum.Store (cubic-feet)	r (Controls 0.00 cfs) 5.35 fps) /kir (Passes < 5.97 rfs fs potential flow) hary for Pond 5P mpervious, Inflow E rs, Volume= rs, Volume= e 0.00-72.00 hrs, dt: Area= 16,891 sf State culated for 3.217 af (8.4 - 800.3) <u>Storage Descriptio</u> Custom Stage Da Inc.Store (cubic-feet)	56 cfs @ ngular W s < 0.66 c Summ 31.40% I 12.24 h 12.24 h 12.58 h 13.58 h	d Rectang Controls 6. sted Recta te (Passes 7.170 ac, 7.65 cfs @ 3.77 cfs @ 3.77 cfs @ method, Ti @ 12.58 h time= 28.1 time= 28.2 time= 28.2 time= 28.2 time= 28.1 time= 28.1 tim= 28.1 time= 28.1 time= 28.1 tim	rea = = 2 = 1 = 1 = 1 by Stor-Ind ev= 216.35' bw detentior of-Mass det <u>Inver</u> 214.00 on §	Inflow A Inflow A Inflow Outflow Outflow Primary Routing Peak Ele Plug-Flc Center-c Volume #1 Elevatio (fee
50%, Lag= 20.4 min below (Recalc) Wet.Area (sq-ft) 9,189	cfs potential flow) : Wet Basin epth = 5.39" fo 3.219 af, Atten= 3.219 af, Atten= 3.219 af 5.219 af 100% of inflow) 100% of inflow)	r (Controls 0.00 cfs) 5.35 fps) /eir (Passes < 5.97 of fs potential flow) mary for Pond 5P mpervious, Inflow E rs, Volume= rs, Volume= e 0.00-72.00 hrs, dt: Area= 16,891 sf Sto culated for 3.217 af (8.4 - 800.3) Storage Descriptio Custom Stage Da Inc.Store (cubic-feet) 0	56 cfs @ ngular W s < 0.66 c Summ 31.40% I 12.24 h 12.58 h 12.58 h 12.58 h me Span rs Surf. <i>F</i> I min calc 2 min (82 Storage 3,930 cf Perim. (feet) 420.0	d Rectang Controls 6. sted Recta te (Passes 7.170 ac, 7.65 cfs @ 3.77 cfs @ 3.77 cfs @ method, Ti @ 12.58 h time= 28.1 time= 28.2 <u>Avail.</u> 10: urf.Area (sq-ft) 9,189	rea = = 2 = 1 by Stor-Ind ev= 216.35' by detentior of-Mass det Inver 214.00 on 5 et) 00	Inflow A Inflow A Inflow Outflow Primary Routing Peak Ele Plug-Flc Center-co <u>Volume</u> #1 Elevatic (fee 214.0
50%, Lag= 20.4 min below (Recalc) Wet.Area (sq-ft)	cfs potential flow) : Wet Basin epth = 5.39" fo 3.219 af 3.219 af, Atten= 3.219 af, Atten= 3.219 af 100% of inflow) n ta (Irregular)Listed Cum.Store (cubic-feet)	r (Controls 0.00 cfs) 5.35 fps) /kir (Passes < 5.97 rfs fs potential flow) hary for Pond 5P mpervious, Inflow E rs, Volume= rs, Volume= e 0.00-72.00 hrs, dt: Area= 16,891 sf State culated for 3.217 af (8.4 - 800.3) <u>Storage Descriptio</u> Custom Stage Da Inc.Store (cubic-feet)	56 cfs @ ngular W s < 0.66 c Summ 31.40% I 12.24 h 12.24 h 12.58 h 13.58 h	d Rectang Controls 6. sted Recta te (Passes 7.170 ac, 7.65 cfs @ 3.77 cfs @ 3.77 cfs @ method, Ti @ 12.58 h time= 28.1 time= 28.2 time= 28.2 time= 28.2 time= 28.1 time= 28.1 tim= 28.1 time= 28.1 time= 28.1 tim	oad-Crester Jvert (Inlet =Sharp-Cre =Orifice/Gra = = = = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = = = = = = 1 = 1 = = =	Inflow A Inflow A Inflow Outflow Outflow Primary Routing Peak Ele Plug-Flc Center-c Volume #1 Elevatio (fee

6842-P				h)	Type III 24	l-hr 100-yr Rainfall=7.81"
		er your compa 3a_s/n 03590 © 3		droCAD Software So	lutions LLC	Page 142
Device	Routing	Invert	Outle	t Devices		
#1	Primary	213.43'	L= 58 Inlet /	Round Culvert 60.0' CPP, projectin Outlet Invert= 213. 013. Flow Area= 3.	43'/211.63' S= (Ke= 0.900 0.0031 '/' Cc= 0.900
#2	Device 1	214.00'	45.0	deg x 4.0' long Sha 2.56 (C= 3.20)		Frap Weir
#3	Device 1	215.50'	4.2' lo Head 2.50 Coef.	ong x 4.2' breadth (feet) 0.20 0.40 0 3.00 3.50 4.00 4.3	0.60 0.80 1.00 1. 50 5.00 5.50 3 2.69 2.68 2.67	20 1.40 1.60 1.80 2.00 7 2.67 2.65 2.66 2.66
1=Ci 1−2=	Ivert (Ba Sharp-Cr	rrel Controls 13. ested Vee/Trap	77 cfs (Weir (58 hrs HW=216.35' @ 4.38 fps) Passes < 55.15 cfs eir (Passes < 8.84 c	potential flow))
	S	ummary for	Pond	7P: Constructed	d Stormwater V	Vetland #1
Inflow A Inflow Outflow Primary	= =	11.903 ac, 28. 43.15 cfs @ 1 40.47 cfs @ 1 40.47 cfs @ 1	2.10 hr: 2.13 hr:	s, Volume=	5.032 af	r 100-yr event 6%, Lag= 1.7 min
				0.00-72.00 hrs, dt= rea= 13,109 sf Sto		
		on time= 20.6 m et. time= 20.2 m		llated for 5.032 af (1).6 - 810.4)	00% of inflow)	
Volume	Inve	ert Avail.Sto		Storage Description		
#1	214.8	0' 14,7	59 cf	Custom Stage Dat	a (Irregular)Listed	below (Recalc)
Elevatio (fee			erim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
214.8 215.0 216.0	30 00	9,939 10,413	766.0 771.0 210.0	0 2,035 12,724	0 2,035 14,759	9,939 10,570 79,782
Device	Routing	Invert	Outle	t Devices		
#1 #2	Primary	215.10'	40.0' Head Coef.		.60 0.80 1.00 1. 6 2.70 2.69 2.68	
#Z	Primary	214.80	L= 25 Inlet /	.0' CPP, projecting	g, no headwall, Ke 80' / 214.00' S= (e= 0.900 0.0320 '/' Cc= 0.900
Primary	OutFlow	Max=39.94 cfs		13 hrs HW=215.58)

 1=Broad-Crested Rectangular Weir (Weir Controls 35.23 cfs @ 1.82 fps)

 2=Culvert (Inlet Controls 4.71 cfs @ 2.38 fps)

HYDIOCADO			HydroCAD Softwar		
		-			
Inflow Area		409 ac,100.00% 06 cfs @12.09		ow Depth = 7.57" for 1 0.258 af	00-yr event
Outflow	= 3.0	00 cfs @ 12.08	hrs, Volume=	0.258 af, Atten= 2%	6, Lag= 0.0 min
Discarded Primary		17 cfs @ 12.10 83 cfs @ 12.08		0.188 af 0.070 af	
			n= 0.00-72.00 hrs		
Peak Elev	= 221.01' @) 12.10 hrs Surl	f.Area= 2,427 sf	Storage= 1,942 cf	
		me= 67.1 min ca me= 67.1 min (8		af (100% of inflow)	
Volume	Invert		Storage Descri		
#1	219.00'	1,942 cl		00'L x 2.00'H Prismatoid	
	Routing		tlet Devices		
#1 F	Primary	He		readth Broad-Crested R 40 0.60 0.80 1.00 1.20	
			ef. (English) 2.69 80 3.31 3.32	2.72 2.75 2.85 2.98 3	.08 3.20 3.28 3.31
#2 E	Discarded	219.00' 2.4	10 in/hr Exfiltrat	ion over Surface area Indwater Elevation = 210.0	00'
		Max=0.17 cfs @ ontrols 0.17 cfs)	12.10 hrs HW=22	21.01' (Free Discharge)	
Primary O	outFlow Ma	x=1.86 cfs @ 12 Rectangular We	.08 hrs HW=221. air (Weir Controls	.01' (Free Discharge) 1.86 cfs @ 0.26 fps)	
				NE RECHARGE TRE	NCH
Inflow Area				ow Depth = 7.57" for 1	00-yr event
Inflow Outflow		06 cfs @ 12.09 00 cfs @ 12.08		0.258 af 0.258 af, Atten= 2%	6 Lag= 0.0 min
Discarded	= 0.	17 cfs @ 12.10	hrs, Volume=	0.188 af	o, Edg- 0.0 min
Primary	= 2.8	83 cfs @ 12.08	hrs, Volume=	0.070 af	
			n= 0.00-72.00 hrs Area= 2,427 sf	s, dt= 0.05 hrs Storage= 1,942 cf	
		me= 67.1 min ca me= 67.1 min (8		af (100% of inflow)	
Volume	Invert		Storage Descri	ption	
#1	219.00'	1,942 cl		10'L x 2.00'H Prismatoid II x 40.0% Voids	
			,		

iyuloc <i>r</i>	<u>\D® 10.10-3a_s</u>	<u>/n 03590 © 2</u>	2020 HydroCAD Software Solutions LLC Page 14
Device	Routing	Invert	
#1	Primary	221.00'	809.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32
#2	Discarded	219.00'	2.410 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 210.00'
	led OutFlow M filtration (Co		is @ 12.10 hrs HW=221.01' (Free Discharge) cfs)
			@ 12.08 hrs HW=221.01' (Free Discharge) ır Weir (Weir Controls 1.86 cfs @ 0.26 fps)
	S	ummary f	or Pond 19P: STONE RECHARGE TRENCH
Inflow A			.00% Impervious, Inflow Depth = 7.57" for 100-yr event
Inflow Outflow			2.09 hrs, Volume= 0.258 af 2.08 hrs, Volume= 0.258 af, Atten= 2%, Lag= 0.0 min
Discard	ed = 0.1	17 cfs 🥘 12	2.10 hrs, Volume= 0.188 af
Primary	= 2.8	3 cfs @ 12	2.08 hrs, Volume= 0.070 af
			Span= 0.00-72.00 hrs, dt= 0.05 hrs Surf.Area= 2,427 sf Storage= 1,942 cf
		me= 67.1 mi	in calculated for 0.258 af (100% of inflow) in (808.6 - 741.5)
Volume #1	Invert 219.00'	Avail.Sto	orage Storage Description 42 cf 3.00'W x 809.00'L x 2.00'H Prismatoid
#1	219.00	1,94	42 ci 3.00 W x 809.00 L x 2.00 H Prismatold 4,854 cf Overall x 40.0% Voids
	Routing	Invert	Outlet Devices
<u>Device</u> #1	Routing Primary	Invert 221.00'	Outlet Devices 809.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00
	U		809.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
Device #1 #2	U		809.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31
#1 #2 Discard	Primary Discarded	221.00' 219.00' Max=0.17 cfs	809.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32 2.410 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 210.00' 's @ 12.10 hrs HW=221.01' (Free Discharge) 12.10
#1 #2 Discard —2=Ex Primary	Primary Discarded led OutFlow M filtration (Cc y OutFlow Ma	221.00' 219.00' Max=0.17 cfs ontrols 0.17 c x=1.86 cfs (809.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32 2.410 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 210.00' 's @ 12.10 hrs HW=221.01' (Free Discharge) 12.10
#1 #2 Discard -2=Ex Primary	Primary Discarded led OutFlow M filtration (Cc y OutFlow Ma	221.00' 219.00' Max=0.17 cfs ontrols 0.17 c x=1.86 cfs (809.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32 2.410 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 210.00' 56 212.10 hrs HW=221.01' (Free Discharge) cfs) @ 12.08 hrs HW=221.01' (Free Discharge) 212.08 hrs HW=221.01' (Free Discharge)

6842-Post Type III 24-hr 100-yr Rainfall=7.81" Prepared by {enter your company name here}	6842-Post Type III 24-hr 100-yr Rainfall=7.81" Prepared by {enter your company name here} HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 146
Prepared by (enter your company name here) <u>HydroCAD® 10.10-3a sin 03590 @ 2020 HydroCAD® 10.10-58 sin 03590 @ 2020 HydroCAD® 10.10-38 sin 03590 @ 2020 HydroCAD® 10.10-38 sin 03590 @ 2020 HydroCAD® 10.10-37 sin 03590 @ 2020 HydroCAD® 10.10-37 sin 03590 @ 2020 HydroCAD® 10.10-37 sin 0350 @ 2020 HydroCAD® 10.179 af 00.179 af 00.179 af 00.110-37 sin 03.179 a</u>	Prepared by {enter your company name here}
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.66' @ 12.09 hrs Flood Elev= 218.60'	-1=Culvert (Inlet Controls 3.83 cfs @ 4.87 fps)

842-Post Type III 24-hr 100-yr Rainfall=7.81" Prepared by {enter your company name here} Image: s/n 03590 @ 2020 HydroCAD Software Solutions LLC VarocAD® 10.10-3a s/n 03590 @ 2020 HydroCAD Software Solutions LLC Page 147	6842-Post Type III 24-hr 100-yr Rainfall=7.81 Prepared by {enter your company name here} HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 144	
Summary for Pond 26P: DMH-1	Device Routing Invert Outlet Devices	
flow Area = 1.264 ac, 80.14% Impervious, Inflow Depth = 6.86" for 100-yr event flow = 9.09 cfs @ 12.09 hrs, Volume= 0.722 af utflow = 9.09 cfs @ 12.09 hrs, Volume= 0.722 af, Atten= 0%, Lag= 0.0 min imary = 9.09 cfs @ 12.09 hrs, Volume= 0.722 af	#1 Primary 215.10' 12.0'' Round Culvert L= 160.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.10' / 214.30' S= 0.0050 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf	
uting by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs hak Elev= 217.87' @ 12.09 hrs	Primary OutFlow Max=3.75 cfs @ 12.09 hrs HW=217.75′ (Free Discharge) ↑ 1=Culvert (Barrel Controls 3.75 cfs @ 4.78 fps)	
ood Elev= 218.90'	Summary for Pond 29P: CB-21	
evice Routing Invert Outlet Devices #1 Primary 215.30' 18.0" Round Culvert L= 56.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.30' / 214.80' S= 0.0089 '/' Cc= 0.900 n= 0.013, Flow Area= 1.77 sf rimary OutFlow Max=8.85 cfs @ 12.09 hrs HW=217.79' (Free Discharge) -1=Culvert (Inlet Controls 8.85 cfs @ 5.01 fps)	Inflow Area = 0.123 ac,100.00% Impervious, Inflow Depth = 7.57" for 100-yr event Inflow = 0.92 cfs @ 12.09 hrs, Volume= 0.077 af Outflow = 0.92 cfs @ 12.09 hrs, Volume= 0.077 af, Atten= 0%, Lag= 0.0 min Primary = 0.92 cfs @ 12.09 hrs, Volume= 0.077 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.76' @ 12.09 hrs Flood Elev= 219.20' Flood Elev= 219.20'	
Summary for Pond 27P: DCB-22	Device Routing Invert Outlet Devices	
flow Area = 0.515 ac,100.00% Impervious, Inflow Depth = 7.57" for 100-yr event flow = 3.85 cfs @ 12.09 hrs, Volume = 0.325 af utflow = 3.85 cfs @ 12.09 hrs, Volume = 0.325 af utflow = 2.85 cfs @ 12.09 hrs, Volume = 0.325 af utflow = 2.35 cfs @ 12.09 hrs, Volume = 0.325 af	#1 Primary 216.20' 12.0" Round Culvert L= 26.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.20' / 215.70' S= 0.0192 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf	
imary = 3.85 cfs @ 12.09 hrs, Volume= 0.325 af puting by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs	Primary OutFlow Max=0.89 cfs @ 12.09 hrs HW=216.75' (Free Discharge)	
eak Elev= 217.66' @ 12.09 hrs ood Elev= 218.50'	Summary for Pond 30P: DMH-15	
evice Routing Invert Outlet Devices #1 Primary 215.50' 12.0" Round Culvert L= 50.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.50' / 215.20' S= 0.0060 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf rimary OutFlow Max=3.75 cfs @ 12.09 hrs HW=217.58' (Free Discharge) -1=Culvert (Inlet Controls 3.75 cfs @ 4.78 fps)	Inflow Area = 0.637 ac, 100.00% Impervious, Inflow Depth = 7.57" for 100-yr event Inflow = 4.77 cfs @ 12.09 hrs, Volume= 0.402 af Outflow = 4.77 cfs @ 12.09 hrs, Volume= 0.402 af, Atten= 0%, Lag= 0.0 min Primary = 4.77 cfs @ 12.09 hrs, Volume= 0.402 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 215.94' @ 12.09 hrs Flood Elev= 219.80'	
Summary for Pond 28P: DMH-16	Device Routing Invert Outlet Devices	
flow Area = 0.515 ac,100.00% Impervious, Inflow Depth = 7.57" for 100-yr event flow = 3.85 cfs @ 12.09 hrs, Volume= 0.325 af utflow = 3.85 cfs @ 12.09 hrs, Volume= 0.325 af, Atten= 0%, Lag= 0.0 min rimary = 3.85 cfs @ 12.09 hrs, Volume= 0.325 af outing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs	#1 Primary 214.20' 15.0" Round Culvert L= 250.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 214.20' / 212.90' S= 0.0052 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf Primary OutFlow Max=4.65 cfs @ 12.09 hrs HW=215.87' (Free Discharge) 1=Culvert (Barrel Controls 4.65 cfs @ 3.79 fps)	
eak Elev= 217.88' @ 12.09 hrs ood Elev= 218.70'		

842-Post Type III 24-hr 100-yr Rainfall=7.81" repared by {enter your company name here}	6842-Post Prepared by {enter your company name here}
ydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 149	HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 15
Summary for Pond 31P: DMH-14	Device Routing Invert Outlet Devices
nflow Area = 1.468 ac, 97.47% Impervious, Inflow Depth = 7.48" for 100-yr event nflow = 10.95 cfs @ 12.09 hrs, Volume= 0.915 af putflow = 10.95 cfs @ 12.09 hrs, Volume= 0.915 af, Atten= 0%, Lag= 0.0 min rimary = 10.95 cfs @ 12.09 hrs, Volume= 0.915 af	#1 Primary 215.60' 12.0" Round Culvert L= 180.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.60' / 214.70' S= 0.0050 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
outing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs eak Elev= 216.20' @ 12.09 hrs	Primary OutFlow Max=3.70 cfs @ 12.09 hrs HW=218.30' (Free Discharge) ☐1=Culvert (Barrel Controls 3.70 cfs @ 4.71 fps)
lood Elev= 218.60'	Summary for Pond 34P: CB-23
vice Routing Invert Outlet Devices #1 Primary 212.80' 18.0'' Round Culvert L= 61.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 212.80' / 212.50' S= 0.0049 '/' Cc= 0.900 n= 0.013. Flow Area = 1.77 sf	Inflow Area = 0.288 ac, 87.12% Impervious, Inflow Depth = 7.09" for 100-yr event Inflow = 2.12 cfs @ 12.09 hrs, Volume= 0.171 af Outflow = 2.12 cfs @ 12.09 hrs, Volume= 0.171 af, Atten= 0%, Lag= 0.0 min Primary = 2.12 cfs @ 12.09 hrs, Volume= 0.171 af
rimary OutFlow Max=10.66 cfs @ 12.09 hrs HW=216.07' (Free Discharge) —1=Culvert (Inlet Controls 10.66 cfs @ 6.03 fps)	Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.90' @ 12.09 hrs Flood Elev= 218.50'
Summary for Pond 32P: CB-20	Device Routing Invert Outlet Devices
nflow Area = 0.318 ac,100.00% Impervious, Inflow Depth = 7.57" for 100-yr event nflow = 2.38 cfs @ 12.09 hrs, Volume= 0.201 af putflow = 2.38 cfs @ 12.09 hrs, Volume= 0.201 af, Atten= 0%, Lag= 0.0 min rimary = 2.38 cfs @ 12.09 hrs, Volume= 0.201 af	#1 Primary 215.90' 12.0" Round Culvert L= 28.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.90' / 215.70' S= 0.0071 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
outing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs eak Elev= 216.63' @ 12.09 hrs	Primary OutFlow Max=2.07 cfs @ 12.09 hrs HW=216.88' (Free Discharge)
lood Elev= 218.50'	Summary for Pond 35P: CB-24
nevice Routing Invert Outlet Devices #1 Primary 215.50' 12.0'' Round Culvert L= 12.0'' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.50' / 215.30' S= 0.0167 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf	Inflow Area = 0.224 ac,100.00% Impervious, Inflow Depth = 7.57" for 100-yr event Inflow = 1.68 cfs @ 12.09 hrs, Volume= 0.141 af Outflow = 1.68 cfs @ 12.09 hrs, Volume= 0.141 af Primary = 1.68 cfs @ 12.09 hrs, Volume= 0.141 af
rimary OutFlow Max=2.32 cfs @ 12.09 hrs HW=216.60' (Free Discharge) —1=Culvert (Inlet Controls 2.32 cfs @ 2.95 fps)	Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.73' @ 12.09 hrs Flood Elev= 218.50'
Summary for Pond 33P: DMH-17	Device Routing Invert Outlet Devices
Inflow Area = 0.513 ac, 92.75% Impervious, Inflow Depth = 7.30" for 100-yr event Inflow = 3.80 cfs @ 12.09 hrs, Volume = 0.312 af Invutflow = 3.80 cfs @ 12.09 hrs, Volume = 0.312 af, Atten = 0%, Lag = Imary = 3.80 cfs @ 12.09 hrs, Volume = 0.312 af	#1 Primary 215.90' 12.0" Round Culvert L= 20.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.90' / 215.70' S= 0.0100 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
touting by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs eak Elev= 218.43' @ 12.09 hrs lood Elev= 218.80'	Primary OutFlow Max=1.63 cfs @ 12.09 hrs HW=216.71' (Free Discharge) —1=Culvert (Barrel Controls 1.63 cfs @ 3.26 fps)

6842-Post Type III 24-hr 100-yr Rainfall=7.81" Prepared by {enter your company name here} HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 151	6842-Post Type III 24-hr 100-yr Rainfall=7.81" Prepared by {enter your company name here} HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 152
HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 151 Summary for Pond 36P: DMH-7	Device Routing Invert Outlet Devices
Inflow Area = 0.323 ac,100.00% Impervious, Inflow Depth = 7.57" for 100-yr event Inflow = 2.42 cfs @ 12.09 hrs, Volume= 0.204 af Outflow = 2.42 cfs @ 12.09 hrs, Volume= 0.204 af, Atten= 0%, Lag= 0.0 min Primary = 2.42 cfs @ 12.09 hrs, Volume= 0.204 af, Atten= 0%, Lag= 0.0 min	#1 Primary 232.20' 12.0" Round Culvert L= 15.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 232.20' / 231.70' S= 0.0333 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 217.15' @ 12.09 hrs	Primary OutFlow Max=0.31 cfs @ 12.09 hrs HW=232.51' (Free Discharge) [↑] —1=Culvert (Inlet Controls 0.31 cfs @ 1.50 fps)
Flood Elev= 219.80'	Summary for Pond 39P: CB-16
Device Routing Invert Outlet Devices #1 Primary 216.00' 12.0" Round Culvert L= 220.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.00' / 214.80' S= 0.0055 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf	Inflow Area = 0.046 ac,100.00% Impervious, Inflow Depth = 7.57" for 100-yr event Inflow = 0.34 cfs @ 12.09 hrs, Volume= 0.029 af Outflow = 0.34 cfs @ 12.09 hrs, Volume= 0.029 af, Atten= 0%, Lag= 0.0 min Primary = 0.34 cfs @ 12.09 hrs, Volume= 0.029 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Primary OutFlow Max=2.35 cfs @ 12.09 hrs HW=217.12' (Free Discharge)	Peak Elev= 232.53' @ 12.09 hrs Flood Elev= 236.20'
Summary for Pond 37P: DMH-10	Device Routing Invert Outlet Devices
Inflow Area = 0.446 ac,100.00% Impervious, Inflow Depth = 7.57" for 100-yr event Inflow = 3.34 cfs @ 12.09 hrs, Volume= 0.281 af Outflow = 3.34 cfs @ 12.09 hrs, Volume= 0.281 af, Atten= 0%, Lag= 0.0 min Primary = 3.34 cfs @ 12.09 hrs, Volume= 0.281 af	#1 Primary 232.20' 12.0" Round Culvert L= 15.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 232.20' / 231.70' S= 0.0333 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 219.23' @ 12.09 hrs	Primary OutFlow Max=0.33 cfs @ 12.09 hrs HW=232.52' (Free Discharge)
Flood Elev= 222.20'	Summary for Pond 52P: CB-17
Device Routing Invert Outlet Devices #1 Primary 218.10' 15.0'' Round Culvert L= 122.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 218.10' / 214.50' S= 0.0295 '/' Cc= 0.900 n= 0.013. Flow Area= 1.23 sf	Inflow Area = 0.081 ac,100.00% Impervious, Inflow Depth = 7.57" for 100-yr event Inflow = 0.60 cfs @ 12.09 hrs, Volume= 0.051 af Outflow = 0.60 cfs @ 12.09 hrs, Volume= 0.051 af, Primary = 0.60 cfs @ 12.09 hrs, Volume= 0.051 af,
Primary OutFlow Max=3.25 cfs @ 12.09 hrs HW=219.21' (Free Discharge) └─1=Culvert (Inlet Controls 3.25 cfs @ 2.83 fps)	Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 247.84' @ 12.09 hrs Flood Elev= 251.40'
Summary for Pond 38P: CB-15	Device Routing Invert Outlet Devices
Inflow Area = 0.043 ac,100.00% Impervious, Inflow Depth = 7.57" for 100-yr event Inflow = 0.32 cfs @ 12.09 hrs, Volume= 0.027 af Outflow = 0.32 cfs @ 12.09 hrs, Volume= 0.027 af, Atten= 0%, Lag= 0.0 min Primary = 0.32 cfs @ 12.09 hrs, Volume= 0.027 af	#1 Primary 247.40' 12.0" Round Culvert L= 18.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 247.40' / 246.50' S= 0.0500 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 232.52' @ 12.09 hrs Flood Elev= 236.20'	Primary OutFlow Max=0.59 cfs @ 12.09 hrs HW=247.84' (Free Discharge) -1=Culvert (Inlet Controls 0.59 cfs @ 1.78 fps)

6842-Post Type III 24-hr 100-yr Rainfall=7.81" Prepared by {enter your company name here} HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 153	6842-Post Prepared by {enter your company name here} HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 154
Prepared by {enter your company name here}	Prepared by {enter your company name here}
Primary = 1.20 cfs (a) 12.09 hrs, Volume= 0.101 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 240.56' (a) 12.09 hrs Flood Elev= 244.00'	Primary OutFlow Max=1.82 cfs @ 12.09 hrs HW=232.47' (Free Discharge)

6842-Post Type III 24-hr 100-yr Rainfall=7.81"	6842-Post Type III 24-hr 100-yr Rainfall=7.81"
Prepared by {enter your company name here} HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 155	Prepared by {enter your company name here} HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 156
Summary for Pond 62P: CB-14	Device Routing Invert Outlet Devices #1 Primary 216.00' 12.0" Round Culvert
Inflow Area = 0.136 ac,100.00% Impervious, Inflow Depth = 7.57" for 100-yr event Inflow = 1.02 cfs @ 12.09 hrs, Volume= 0.086 af Outflow = 1.02 cfs @ 12.09 hrs, Volume= 0.086 af, Atten= 0%, Lag= 0.0 min Primary = 1.02 cfs @ 12.09 hrs, Volume= 0.086 af	L= 24.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.00' / 215.50' S= 0.0208 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 219.50' @ 12.09 hrs	Primary OutFlow Max=0.98 cfs @ 12.09 hrs HW=216.58' (Free Discharge) [●] —1=Culvert (Inlet Controls 0.98 cfs @ 2.05 fps)
Flood Elev= 221.90'	Summary for Pond 67P: CB-7
Device Routing Invert Outlet Devices #1 Primary 218.90' 12.0'' Round Culvert L= 15.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 218.90' / 218.20' S= 0.0467 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf Primary OutFlow Max=0.99 cfs @ 12.09 hrs HW=219.49' (Free Discharge)	Inflow Area = 0.093 ac,100.00% Impervious, Inflow Depth = 7.57" for 100-yr event Inflow = 0.70 cfs @ 12.09 hrs, Volume= 0.059 af Outflow = 0.70 cfs @ 12.09 hrs, Volume= 0.059 af, Atten= 0%, Lag= 0.0 min Primary = 0.70 cfs @ 12.09 hrs, Volume= 0.059 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.48" @ 12.09 hrs
1=Culvert (Inlet Controls 0.99 cfs @ 2.06 fps)	Flood Elev= 219.00'
Summary for Pond 63P: DMH-4	Device Routing Invert Outlet Devices
Inflow Area = 1.336 ac,100.00% Impervious, Inflow Depth = 7.57" for 100-yr event Inflow = 10.00 cfs @ 12.09 hrs, Volume= 0.843 af Outflow = 10.00 cfs @ 12.09 hrs, Volume= 0.843 af, Atten= 0%, Lag= 0.0 min Primary = 10.00 cfs @ 12.09 hrs, Volume= 0.843 af	#1 Primary 216.00' 12.0" Round Culvert L= 24.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.00' / 215.50' S= 0.0208 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.04' @ 12.09 hrs	Primary OutFlow Max=0.68 cfs @ 12.09 hrs HW=216.47' (Free Discharge)
Flood Elev= 222.20'	Summary for Pond 68P: DMH-9
Device Routing Invert Outlet Devices #1 Primary 214.10' 24.0" Round Culvert L= 35.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 214.10' / 214.00' S= 0.0029 '/' Cc= 0.900 n= 0.013, Flow Area= 3.14 sf	Inflow Area = 0.909 ac, 78.68% Impervious, Inflow Depth = 6.82" for 100-yr event Inflow = 6.53 cfs @ 12.09 hrs, Volume= 0.517 af Outflow = 6.53 cfs @ 12.09 hrs, Volume= 0.517 af, Atten= 0%, Lag= 0.0 min Primary = 6.53 cfs @ 12.09 hrs, Volume= 0.517 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Primary OutFlow Max=9.73 cfs @ 12.09 hrs HW=216.00' (Free Discharge) —1=Culvert (Barrel Controls 9.73 cfs @ 4.06 fps)	Peak Elev= 218.68 @ 12.09 hrs Flood Elev= 219.40'
Summary for Pond 66P: CB-6	Device Routing Invert Outlet Devices
Inflow Area = 0.134 ac,100.00% Impervious, Inflow Depth = 7.57" for 100-yr event Inflow = 1.01 cfs @ 12.09 hrs, Volume= 0.085 af Outflow = 1.01 cfs @ 12.09 hrs, Volume= 0.085 af, Atten= 0%, Lag= 0.0 min Primary = 1.01 cfs @ 12.09 hrs, Volume= 0.085 af	#1 Primary 216.10' 15.0'' Round Culvert L= 79.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.10' / 215.40' S= 0.0089 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.59' @ 12.09 hrs Flood Elev= 219.00'	Primary OutFlow Max=6.36 cfs @ 12.09 hrs HW=218.58' (Free Discharge) -1=Culvert (Inlet Controls 6.36 cfs @ 5.18 fps)

6842-Post Type III 24-hr 100-yr Rainfall=7.81" Prepared by {enter your company name here}	6842-Post Type III 24-hr 100-yr Rainfall=7.81" Prepared by {enter your company name here}
HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 157	HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 158 Device Routing Invert Outlet Devices
Summary for Pond 69P: CB-11 Inflow Area = 0.107 ac,100.00% Impervious, Inflow Depth = 7.57" for 100-yr event Inflow = 0.80 cfs @ 12.09 hrs, Volume= 0.067 af Outflow = 0.80 cfs @ 12.09 hrs, Volume= 0.067 af, Atten= 0%, Lag= 0.0 min Primary = 0.80 cfs @ 12.09 hrs, Volume= 0.067 af	#1 Primary 215.50' 12.0" Round Culvert L= 32.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.50' / 215.30' S= 0.0062 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.86' @ 12.09 hrs	Primary OutFlow Max=1.28 cfs @ 12.09 hrs HW=216.22' (Free Discharge)
Flood Elev= 219.30'	Summary for Pond 72P: CB-9
Device Routing Invert Outlet Devices #1 Primary 216.30' 12.0" Round Culvert L= 14.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.30' / 216.20' S= 0.0071 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf	Inflow Area = 0.165 ac,100.00% Impervious, Inflow Depth = 7.57" for 100-yr event Inflow = 1.24 cfs @ 12.09 hrs, Volume= 0.104 af Outflow = 1.24 cfs @ 12.09 hrs, Volume= 0.104 af, Atten= 0%, Lag= 0.0 min Primary = 1.24 cfs @ 12.09 hrs, Volume= 0.104 af
Primary OutFlow Max=0.78 cfs @ 12.09 hrs HW=216.85' (Free Discharge)	Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.22' @ 12.09 hrs Flood Elev= 218.50'
Summary for Pond 70P: CB-12	Device Routing Invert Outlet Devices
Inflow Area = 0.802 ac, 75.84% Impervious, Inflow Depth = 6.72" for 100-yr event Inflow = 5.73 cfs @ 12.09 hrs, Volume= 0.449 af Outflow = 5.73 cfs @ 12.09 hrs, Volume= 0.449 af, Atten= 0%, Lag= 0.0 min Primary = 5.73 cfs @ 12.09 hrs, Volume= 0.449 af	#1 Primary 215.50' 12.0" Round Culvert L= 37.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.50' / 215.30' S= 0.0054 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 218.43' @ 12.09 hrs	Primary OutFlow Max=1.20 cfs @ 12.09 hrs HW=216.21' (Free Discharge) —1=Culvert (Barrel Controls 1.20 cfs @ 2.84 fps)
Flood Elev= 219.30'	Summary for Pond 73P: DMH-6
Device Routing Invert Outlet Devices #1 Primary 216.30' 15.0'' Round Culvert L= 14.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.30' / 216.20' S= 0.0071 '/' Cc= 0.900 n= 0.013. Flow Area= 1.23 sf	Inflow Area = 0.340 ac,100.00% Impervious, Inflow Depth = 7.57" for 100-yr event Inflow = 2.55 cfs @ 12.09 hrs, Volume= 0.215 af Outflow = 2.55 cfs @ 12.09 hrs, Volume= 0.215 af, Atten= 0%, Lag= 0.0 min Primary = 2.55 cfs @ 12.09 hrs, Volume= 0.215 af
Primary OutFlow Max=5.58 cfs @ 12.09 hrs HW=218.36' (Free Discharge) └─1=Culvert (Inlet Controls 5.58 cfs @ 4.55 fps)	Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.43' @ 12.09 hrs Flood Elev= 219.10'
Summary for Pond 71P: CB-8	Device Routing Invert Outlet Devices #1 Primary 215.20' 12.0" Round Culvert
Inflow Area = 0.175 ac,100.00% Impervious, Inflow Depth = 7.57" for 100-yr event Inflow = 1.31 cfs @ 12.09 hrs, Volume= 0.111 af Outflow = 1.31 cfs @ 12.09 hrs, Volume= 0.111 af, Atten= 0%, Lag= 0.0 min Primary = 1.31 cfs @ 12.09 hrs, Volume= 0.111 af	L= 52.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.20' / 214.80' S= 0.0077 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.24' @ 12.09 hrs Flood Elev= 218.50'	Primary OutFlow Max=2.48 cfs @ 12.09 hrs HW=216.39' (Free Discharge)

6842-Post Type III 24-hr 100-yr Rainfall=7.81" Prepared by {enter your company name here} HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 159	6842-Post Type III 24-hr 100-yr Rainfall=7.81" Prepared by {enter your company name here} HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 160	
Summary for Pond 78P: CB-19 Inflow Area = 0.122 ac,100.00% Impervious, Inflow Depth = 7.57" for 100-yr event Inflow = 0.92 cfs @ 12.09 hrs, Volume= 0.077 af Outflow = 0.92 cfs @ 12.09 hrs, Volume= 0.077 af, Atten= 0%, Lag= 0.0 min Primary = 0.92 cfs @ 12.09 hrs, Volume= 0.077 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.97" @ 12.09 hrs Flood Elev= 219.00' Flood Elev= 219.00'	Device Routing Invert Outlet Devices #1 Primary 214.70' 15.0" Round Culvert L= 67.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 214.70' / 214.20' S= 0.0075 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf Primary OutFlow Max=4.83 cfs @ 12.09 hrs HW=216.40' (Free Discharge) I=Culvert (Inlet Controls 4.83 cfs @ 3.94 fps) Summary for Pond 81P: CB-5	
Device Routing Invert Outlet Devices #1 Primary 216.40' 12.0'' Round Culvert L= 45.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.40' / 216.10' S= 0.0067 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf Primary OutFlow Max=0.89 cfs @ 12.09 hrs HW=216.96' (Free Discharge) 1=Culvert (Barrel Controls 0.89 cfs @ 2.83 fps)	Inflow Area = 0.287 ac, 88.82% Impervious, Inflow Depth = 7.21" for 100-yr event Inflow = 2.12 cfs @ 12.09 hrs, Volume= 0.172 af Outflow = 2.12 cfs @ 12.09 hrs, Volume= 0.172 af, Atten= 0%, Lag= 0.0 min Primary = 2.12 cfs @ 12.09 hrs, Volume= 0.172 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 217.01' @ 12.09 hrs Flood Elev= 219.00' 12.09 hrs	
Summary for Pond 79P: CB-10 Inflow Area = 0.200 ac,100.00% Impervious, Inflow Depth = 7.57" for 100-yr event Inflow = 1.50 cfs @ 12.09 hrs, Volume= 0.126 af Outflow = 1.50 cfs @ 12.09 hrs, Volume= 0.126 af, Atten= 0%, Lag= 0.0 min Primary = 1.50 cfs @ 12.09 hrs, Volume= 0.126 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 217.16' @ 12.09 hrs Flood Elev= 219.00' Flood Elev= 219.00'	Device Routing Invert Outlet Devices #1 Primary 216.00' 12.0" Round Culvert L= 31.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.00' / 215.80' S= 0.0065 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf Primary OutFlow Max=2.06 cfs @ 12.09 hrs HW=216.99' (Free Discharge) 1=Culvert (Barrel Controls 2.06 cfs @ 3.29 fps) Summary for Pond 82P: DMH-3	
Device Routing Invert Outlet Devices #1 Primary 216.40' 12.0" Round Culvert L = 17.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 216.40' / 216.10' S= 0.0176 '/' Cc= 0.900 n = 0.013, Flow Area= 0.79 sf Primary OutFlow Max=1.46 cfs @ 12.09 hrs HW=217.15' (Free Discharge) —1=Culvert (Inlet Controls 1.46 cfs @ 2.32 fps)	Inflow Area = 0.287 ac , 88.82% Impervious, Inflow Depth = $7.21"$ for 100-yr event Inflow = $2.12 \text{ cfs} @ 12.09 \text{ hrs}$, Volume= 0.172 af Outflow = $2.12 \text{ cfs} @ 12.09 \text{ hrs}$, Volume= 0.172 af , Atten= 0%, Lag= 0.0 min Primary = $2.12 \text{ cfs} @ 12.09 \text{ hrs}$, Volume= 0.172 af Routing by Stor-Ind method, Time Span= $0.00-72.00 \text{ hrs}$, dt= 0.05 hrs Peak Elev= $216.70' @ 12.09 \text{ hrs}$ Flood Elev= $218.90'$	
Summary for Pond 80P: DMH-5 Inflow Area = 0.663 ac,100.00% Impervious, Inflow Depth = 7.57" for 100-yr event Inflow = 4.96 cfs @ 12.09 hrs, Volume= 0.418 af Outflow = 4.96 cfs @ 12.09 hrs, Volume= 0.418 af Primary = 4.96 cfs @ 12.09 hrs, Volume= 0.418 af Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 216.45' @ 12.09 hrs Flood Elev= 220.00' 12.09 hrs 500 hrs	Device Routing Invert Outlet Devices #1 Primary 215.70' 12.0" Round Culvert L= 70.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.70' / 215.30' S= 0.0057 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf Primary OutFlow Max=2.07 cfs @ 12.09 hrs HW=216.68' (Free Discharge) L=Culvert (Inlet Controls 2.07 cfs @ 2.65 fps)	

6842-Post	Type III 24-hr 100-yr Rainfall=7.81"	,
Prepared by {enter your company name here} HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Softw	colutions LLC Page 161	

Summary for Link 20L: DP-A

Inflow Area =	30.660 ac, 24.72% Impervious, Inflow Depth = 4.69" for 100-yr event
Inflow =	76.09 cfs @ 12.27 hrs, Volume= 11.979 af
Primary =	76.09 cfs @ 12.27 hrs, Volume= 11.979 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Appendix F – Stormwater Calculations

Groton Farms June 16, 2023 Groton, MA 6842 Recharge/WQV Calcs Stormwater Recharge Calculations Recharge volume required, Rv = 0 C.ft The recharge volume standard is being met in virtue of the fact that impervious areas are being reduced on site. ¹ Imp. area captured by Apt. roofs, Ap = 1.23 Ac ¹ Total Recharge Volume Provided = 24,568.0 C.ft

<u>NOTES:</u>

¹ = Sum of Recharge Vol. Provided from apartment building roofs.

Water Quality Calculation:

 $V_{WQ} = D_{WQ}(ft) x A_T(ft^2)$

Water Quality Depth =	1	in
Water Quality Depth , Dwo =	0.08	ft.
Total impervious area on site, A⊤ =	7.580	
A _T =	330,185	ft ²
Required Water Quality Volume, Vwo =	27,515	C.ft.

REFERENCES

1 inch depth
Zone II discharges
IWPA discharges
Critical Area
Runoff from LUHPPL
Infiltration rate >2.4 inches/hour
1/2 inch depth
Discharge to other ares
8 inch
9 inch
10 inch
11 inch

FES-2 & FES-3 Sediment Forebay Sizing Calculations

Stormwater Recharge Calculations

CALCULATIONS

Recharge Volume, Rv:

$R_{v} = A_{C} x F$

Hydrologic Soil Group	Impervious Area (Ac) ¹	Target Depth (F)	Recharge Volume (Rv) Ac-feet
A	1.756	0.6	0.088
С	0.007	0.25	0.000
Total	1.763		0.088

REFERENCES

Table 2.3.2: Recharge Target Depth by Hydrologic Soil Group

NRCS Hydrologic	Approx. Soil	Target Depth
Soil Group	Texture	Factor (F)
B	sand Ioam	0.6 inch 0.35 inch
C	silty loam	0.25 inch
D	clay	0.1 inch

$F_v = A_c(cu.ft)x0.1inch$ of impervious area	
¹ Imp. area captured by ponds, Ap =	1.763 Ac
Required Sediment Forebay vol, Fv=	640 C.ft
Sediment Forebay Volume Provided =	920.0 C.ft

June 16, 2023 6842

FES-4 Sediment Forebay Sizing Calculations

Stormwater Recharge Calculations

CALCULATIONS

Recharge Volume, Rv:

 $R_{v} = A_{C} x F$

Hydrologic Soil Group	Impervious Area (Ac) ¹	Target Depth (F)	Recharge Volume (Rv) Ac-feet
A	1.248	0.6	0.062
Total	1.248		0.062

REFERENCES

Table 2.3.2: Recharge Target Depth by Hydrologic Soil Group

NRCS Hydrologic Soil Group	Approx. Soil Texture	Target Depth Factor (F)
А	sand	0.6 inch
В	loam	0.35 inch
С	silty loam	0.25 inch
D	clay	0.1 inch

$F_v = A_c(cu.ft)x0.1inch$ of impervious area	
¹ Imp. area captured by ponds, Ap =	1.248 Ac
Required Sediment Forebay vol, Fv=	453 C.ft
Sediment Forebay Volume Provided =	472.0 C.ft

June 16, 2023 6842

FES-5 Sediment Forebay Sizing Calculations

Stormwater Recharge Calculations

CALCULATIONS

Recharge Volume, Rv:

 $R_{v} = A_{C} x F$

Hydrologic Soil Impervious Group Area (Ac) ¹		Target Depth (F)	Recharge Volume (Rv) Ac-feet
A	0.998	0.6	0.050
D	0.338	0.1	0.003
Total	1.336		0.053

REFERENCES

Table 2.3.2: Recharge Target Depth by Hydrologic Soil Group

NRCS Hydrologic Soil Group	Approx. Soil Texture	Target Depth Factor (F)
А	sand	0.6 inch
В	loam	0.35 inch
С	silty loam	0.25 inch
D	clay	0.1 inch

$F_v = A_c(cu.ft)x0.1inch$ of impervious area	
¹ Imp. area captured by ponds, Ap =	1.336 Ac
Required Sediment Forebay vol, Fv=	485 C.ft
Sediment Forebay Volume Provided =	3,743.0 C.ft

June 16, 2023 6842

FES-6 Sediment Forebay Sizing Calculations

Stormwater Recharge Calculations

CALCULATIONS

Recharge Volume, Rv:

 $R_{v} = A_{C} x F$

Hydrologic Soil Group	Impervious Area (Ac) ¹	Target Depth (F)	Recharge Volume (Rv) Ac-feet
A	1.431	0.6	0.072
Total	1.431		0.072

REFERENCES

Table 2.3.2: Recharge Target Depth by Hydrologic Soil Group

NRCS Hydrologic Soil Group	Approx. Soil Texture	Target Depth Factor (F)
А	sand	0.6 inch
В	loam	0.35 inch
С	silty loam	0.25 inch
D	clay	0.1 inch

$F_v = A_c(cu.ft)x0.1inch$ of impervious area	
¹ Imp. area captured by ponds, Ap =	1.431 Ac
Required Sediment Forebay vol, Fv=	519 C.ft
Sediment Forebay Volume Provided =	684.0 C.ft

1. In BMP Column, click on Blue Cell to Activate Drop Down Menu

2. Select BMP from Drop Down Menu

3. After BMP is selected, TSS Removal and other Columns are automatically completed.

	Location:	SS removal with pretreatm	ent calculation.]	
	В	С	D	Е	F
		TSS Removal	Starting TSS	Amount	Remaining
	BMP ¹	Rate ¹	Load*	Removed (C*D)	Load (D-E)
oval ion eet	Deep Sump and Hooded Catch Basin	0.25	1.00	0.25	0.75
ISS Remova Calculation Worksheet	Sediment Forebay	0.25	0.75	0.19	0.56
Vo al		0.00	0.56	0.00	0.56
<u>ເ</u> ເ		0.00	0.56	0.00	0.56
		0.00	0.56	0.00	0.56
					Separate Form Needs to be

Total TSS Removal =

Separate Form Needs to be Completed for Each Outlet or BMP Train

Project: 500 Main Street Prepared By: RPV

Date: 1-Feb-23

*Equals remaining load from previous BMP (E) which enters the BMP

1. In BMP Column, click on Blue Cell to Activate Drop Down Menu

2. Select BMP from Drop Down Menu

3. After BMP is selected, TSS Removal and other Columns are automatically completed.

	Location:	TSS removal with pretreatm	ent calculation.]	
	В	С	D	Е	F
		TSS Removal	Starting TSS	Amount	Remaining
_	BMP ¹	Rate ¹	Load*	Removed (C*D)	Load (D-E)
a					
TSS Remova Calculation Worksheet	Grass Channel	0.50	1.00	0.50	0.50
em lat she					
rk Cu	Sediment Forebay	0.25	0.50	0.13	0.38
/o al		0.00	0.38	0.00	0.38
\circ \circ $>$		0.00	0.38	0.00	0.38
-		0.00	0.38	0.00	0.38
-					Separate Form Needs to be

Total TSS Removal =

Separate Form Needs to be Completed for Each Outlet or BMP Train

Project: 500 Main Street Prepared By: RPV

Date: 1-Feb-23

*Equals remaining load from previous BMP (E) which enters the BMP

1. In BMP Column, click on Blue Cell to Activate Drop Down Menu

2. Select BMP from Drop Down Menu

3. After BMP is selected, TSS Removal and other Columns are automatically completed.

	Location: TSS removal for overall site.]	
	В	С	D	Е	F
		TSS Removal	Starting TSS	Amount	Remaining
	BMP ¹	Rate ¹	Load*	Removed (C*D)	Load (D-E)
oval ion eet	Deep Sump and Hooded Catch Basin	0.25	1.00	0.25	0.75
TSS Removal Calculation Worksheet	Wet Basin	0.80	0.75	0.60	0.15
S Vo Vo		0.00	0.15	0.00	0.15
<u>ເ</u> ທ		0.00	0.15	0.00	0.15
		0.00	0.15	0.00	0.15
					Separate Form Needs to be

Total TSS Removal =

Separate Form Needs to be Completed for Each Outlet or BMP Train

Project: 500 Main Street Prepared By: RPV

Date: 1-Feb-23

*Equals remaining load from previous BMP (E) which enters the BMP

1. In BMP Column, click on Blue Cell to Activate Drop Down Menu

2. Select BMP from Drop Down Menu

3. After BMP is selected, TSS Removal and other Columns are automatically completed.

	Location: TSS removal for overall site.]	
	В	С	D	Е	F
		TSS Removal	Starting TSS	Amount	Remaining
	BMP ¹	Rate ¹	Load*	Removed (C*D)	Load (D-E)
oval ion eet	Deep Sump and Hooded Catch Basin	0.25	1.00	0.25	0.75
TSS Removal Calculation Worksheet	Constructed Stormwater Wetland	0.80	0.75	0.60	0.15
lo al		0.00	0.15	0.00	0.15
ର		0.00	0.15	0.00	0.15
F		0.00	0.15	0.00	0.15
					Separate Form Needs to be

Total TSS Removal =

Separate Form Needs to be Completed for Each Outlet or BMP Train

Project: 500 Main Street

Prepared By: RPV Date: 16-Jun-23

*Equals remaining load from previous BMP (E) which enters the BMP

LAND SURVEYING

WETLAND CONSULTING

ENGINEERING 02/09/2023 #6842

Groton Farms 500 Main Street Groton, MA

Sediment Loading Calculations

The following pretreatment structure below for the proposed development receives the largest amount of tributary runoff on site to be sanded. This structure was used to analyze the capacity of the four-foot sump within the structure. This area is the sum of all paved areas that will be routed through the pre-treatment device prior to entering the stormwater management areas. The volume of sediment accumulated is based on a sand density of 90 pounds per cubic foot and assumes a frequency of 10 sandings per year. The calculation used is as follows:

Annual Sediment Accumulated = (Area to be sanded in acres) $x 500 \frac{lbs}{acre - storm} x \frac{10 \ storms}{90 \frac{lbs}{ft^3}}$

Structure	Area to be Sanded (Acres)	Annual Sediment Accumulated (ft ³)
DCB-12	0.487	27.05

A four-foot sump in these structures equates to a storage area of approximately 50 cubic feet. As such, the accumulated sediment will not cause any clogging to the outlet culverts.

the Ville

Ryan Vickers, E.I.T. Civil Engineer

Gregory S. Roy, P.E. Principal

This page was intentionally left blank

The project is covered under the National Pollutant Discharge Elimination System (NPDES) Construction General Permit, which will be submitted in place of the Construction Period Pollution Prevention Plan, prior to any land disturbance. This page was intentionally left blank

Appendix H - Operation and Maintenance Plan

STORMWATER OPERATION & MAINTENANCE MANUAL

FOR

GROTON FARMS 500 MAIN STREET

In

GROTON, MASSACHUSETTS

- PREPARED BY:DILLIS & ROY
CIVIL DESIGN GROUP, INC.
1 Main Street, Suite 1
Lunenburg, MA 01462
- PREPARED FOR: 500 MG LLC 6 Lyberty Way Westford, MA 01886

Revised: June 16th, 2023 February 9th, 2023

CDG PROJECT #6842

TABLE OF CONTENTS:

1.0 **Project Narrative**

- 1.1 Overview of Drainage System
- 1.2 Routine Operation & Maintenance Tasks
- 1.3 *O&M Schedule*

2.0 Appendices

Appendix A – Stormwater Management System Owners/Operators

1.0 Project Narrative

1.1 Proposed Stormwater Management System

The proposed stormwater management system was designed to reduce the peak rate of stormwater leaving the site, promote groundwater recharge, and increase the water quality. Runoff from the proposed development will be conveyed and treated using sedimentation forebays, stormwater wetlands, & a wet basin. Three proposed apartment buildings will utilize a drip line recharge trench along the building's perimeter.

Constructed Stormwater Wetlands with Sediment Forebay

Two constructed stormwater wetlands with sediment forebays will treat the runoff. Constructed stormwater wetlands are stormwater wetland systems that maximize the removal of pollutants from stormwater runoff through wetland vegetation uptake, retention and settling. Constructed stormwater wetlands temporarily store runoff in shallow pools that support conditions suitable for the growth of wetland plants. The sediment forebays are designed to reduce the velocity of flow which will increase the settlement of heavy solids before emptying to the basins. Riprap will also be installed at the inlet of the sediment forebays to reduce the potential for scouring.

Deep Sump Hooded Catch Basins

Deep sump hooded catch basins are proposed to convey the runoff from the proposed roadway & roofs to the stormwater wetlands or wet basin. These catch basins will discharge to manholes and conventional storm drains.

Drip Line Recharge Trenches

Drip line recharge trenches are proposed along the foundations of each dwelling to collect and mitigate any stormwater runoff associated with the proposed roofs. The recharge trenches will consist of $\frac{3}{4}$ " trap stone laid on filter fabric to prevent sediment buildup. The recharge trenches have been designed to accommodate the runoff volume associated with the 100-year storm.

Wet Basin

The proposed reconstructed wet basin utilizes a permanent pool of water as the primary mechanism to treat stormwater runoff. The pool allows sediments to settle (including fine sediments) and removes soluble pollutants. The wet basin has been designed to provide additional dry storage capacity to control peak discharge rates. The wet basin allows incoming stormwater to displace the water present in the pool. This stormwater remains until displaced by runoff from

another storm event. Increased retention time allows particulates, including fine sediments, to settle out of the water column. The permanent pool also serves to protect deposited sediments from resuspending during large storm events. A sediment forebay was designed at the entrance of the basin to decrease the velocity of flow and increase the settlement of heavy solids prior to entering the basin. Riprap will also be installed at the inlet of the sediment forebays and the outlet of the basin to control the overflow of stormwater into the adjacent wetlands and will reduce the potential for scouring.

Grassed Swales

The grassed channels have been designed with a relatively flat (2.0%) slope to reduced runoff velocity and increase hydraulic residency time to promote particulate settling. The grassed channel has been provided with a sediment forebay for stormwater pretreatment. The grass swales will receive runoff from the proposed roofs along the townhomes & sheet flow from the entrance road. The entrance road has been designed with a 2% cross-slope to pitch towards a grassed swale system to convey the runoff to Constructed Stormwater Wetland #1's sediment forebay for additional treatment.

1.2 Operation & Maintenance Tasks

The following activities should be performed routinely to allow for proper functioning of the stormwater system. The following are guidelines referring to each major component of the stormwater management system.

1.2.1 Street Sweeping

Street sweeping should be performed at least annually. For most effective results, sweeping should be preformed by a vacuum style truck in the early spring before spring rain events can wash silt and sediment into the stormwater system. Silt and sediment should be disposed of in accordance with local, state and federal guidelines for hazardous waste.

1.2.2 Constructed Stormwater Wetlands

Unlike conventional wet basin systems that require large-scale sediment removal at infrequent intervals, constructed stormwater wetlands require small-scale maintenance at regular intervals to evaluate the health and composition of the plant species.

Proponents must carefully observe the constructed stormwater wetland system over time. In the first three years after construction, inspect the constructed stormwater wetlands twice a year during both the growing and non-growing seasons. This requirement must be included in the Operation & Maintenance plan. During these inspections, record and map the following information:

•The types and distribution of the dominant wetland plants in the marsh;

•The presence and distribution of planted wetland species;

•The presence and distribution of invasive wetland

species (invasives must be removed);

Indications that other species are replacing the planted wetland species;
Percentage of standing water that is unvegetated (excluding the deep water cells which are not suitable for emergent plant growth);

•The maximum elevation and the vegetative condition in this zone, if the design elevation of the normal pool is being maintained for wetlands with extended zones;

•Stability of the original depth zones and the micro-topographic features; and

•Accumulation of sediment in the forebay and micropool; and survival rate of plants (cells with dead plants must be replanted).

1.2.3 Sediment Forebay

A sediment forebay is required as a pretreatment device prior to discharging stormwater to the constructed wetlands & wet basin. The sediment forebay will provide pretreatment by slowing stormwater runoff and increasing settlement of the sediment. The sediment forebay should be inspected monthly and cleaned of accumulated sediment on a quarterly basis. After sediment removal, repair any damaged vegetation by reseeding or re-sodding. Grass should be maintained at a height of 4-6 inches.

1.2.4 Deep Sump Catch Basins

Deep sump catch basins shall be inspected at least semi-annually for signs of wear, settling, cracking or other fatigue. Catch basin castings should be inspected for signs of root intrusion or significant water infiltration. Catch basin sump should be check for silt/sediment buildup and cleaned as necessary. Cleaning should be performed by a vacuum truck. Catch basins should be resealed as required and outlets should be inspected incidentally with all structure inspections.

1.2.5 Storm Drain Lines

Storm drainage inlets and outlets should be inspected incidentally with all structure inspections. Evidence of debris intrusion or excessive siltation or sedimentation could result in the need to clean a storm drain line. Flushing or jetting should be performed as required. All flushing and jetting should be performed in the direction away from any outlet devices. A vacuum truck should be used at the opposite end of the flushing or jetting to remove any silt or sediment that is cleaned from the storm drain.

1.2.6 Drip Line Recharge Trenches

Perform preventive maintenance at least twice a year. Inspect and clean pretreatment BMPs every six months and after every major storm event (2-year return frequency). Remove accumulated sediment, trash, debris, leaves, and grass clippings from mowing. Remove tree seedlings, before they become firmly established. Inspect the infiltration trench after the first several rainfall events, after all major storms, and on regularly scheduled dates twice a year. If the top of the trench is grassed, it must be mowed on a seasonal basis. Grass height must be maintained to be no more than four inches. Routinely remove grass clippings leaves and accumulated sediment from the surface of the trench. Inspect the trench 24 hours or several days after a rain event, to look for ponded water. If there is ponded water at the surface of the trench, it is likely that the trench surface is clogged. To address surface clogging, remove and replace the topsoil or first layer of stone aggregate and the filter fabric. If water is ponded inside the trench, it may indicate that the bottom of the trench has failed. To rehabilitate a failed trench, all accumulated sediment must be stripped from the bottom, the bottom of the trench must be scarified and tilled to induce infiltration, and all the stone aggregate and filter fabric or media must be removed and replaced.

1.2.7 Wet Basin

Inspect the wet basin at least once per year to ensure it is operating as designed. Inspect the outlet structure for evidence of clogging or excessive outflow releases. Potential problems to check include: subsidence, erosion, cracking or tree growth on the embankment, damage to the emergency spillway, sediment accumulation around the outlet, inadequacy of the inlet/outlet channel erosion control measures, changes in the condition of the pilot channel, erosion within the basin and banks, and the emergence of invasive species. Make any necessary repairs immediately. During inspections, note any changes to the wet basin or the contributing watershed area because these may affect basin performance. At least twice a year, mow the upper-stage, side slopes, embankment and emergency spillway. At this time, also check the sediment forebay for accumulated material, sediment, trash, and debris and remove it. Remove sediment from the basin as necessary, and at least once every 10 years. Providing an on on-site sediment disposal area will reduce the overall sediment removal costs.

The riprap used for the sediment forebay should be inspected regularly for sediment build up, clogging or other unwanted materials such as trash. The riprap should be cleaned as required.

O&M Schedule

	zM Task	Monthly	Quarterly	Spring	Fall	2-years	As-required	
1.	Constructed Stormwater Wetlands							
	Inspection			X	X		X	
	Remove Debris			X	X		X	
	Remove Sediment						X	
	Re-seed						X	
2.	Sediment Forebay							
	Inspection	x		x	x		x	
	Mowing	3-4 t	3-4 times during the growing season					
	Remove Debris		X		0		X	
	Remove Sediment		X				x	
	Re-seed						x	
3.	Stone Rip Rap							
	Inspection			X				
	Remove Debris			X			X	
	Remove Silt/Sediment					X	X	
	Repair						X	
4.	Storm Drain Lines							
	Inspection			x			x	
	Clean						X	
5.	Catch Basin							
	Inspection			X	X			
	Remove Debris						X	
	Remove Silt/Sediment						X	
7.	Drain Manholes							
	Inspect Rims							
	Inspect inside/inlet and outlet pipes	-		X	v			
	Remove sediment			Λ	X	1 7	v	
	Kemove seatment					X	X	
8.	Wet Basin							
	Inspection			x	X		x	
	Remove Debris		1	x	X		x	
	Remove Sediment						x	

APPENDIX A

Stormwater Management System Owners/Operators

1.	Stormwater Management System Owners:	To be determined
2.	Current and future operators:	To be determined
3.	Emergency contact information:	To be determined
4.	Change of trustee:	To be determined
5.	Financial Responsible Party:	To be determined
6.	Routine Maintenance:	To be determined
7.	O&M activities:	To be determined
8.	Record keeping	To be determined

Appendix I - Long Term Pollution Prevention Plan

LONG-TERM POLLUTION PREVENTION PLAN

FOR

GROTON FARMS 500 MAIN STREET

In

GROTON, MASSACHUSETTS

PREPARED BY:DILLIS & ROYCIVIL DESIGN GROUP, INC.1 Main Street, Suite 1Lunenburg, MA 01462

PREPARED FOR: 500 MG LLC 6 Lyberty Way Westford, MA 01886

Revised: June 16th, 2023 February 9th, 2023

CDG PROJECT #6842

1.0 Summary

This Long-Term Pollution Prevention Plan (LTPPP) has been prepared by Dillis & Roy Civil Design Group, Inc. pursuant to the Massachusetts Stormwater Regulations. The applicant 500 MG LLC is proposing the construction of a mixed-use development on the north side of Route 119 just northerly of the intersection of Mill Street & Main Street. The proposed development consists of 16 quadplex units (1,220 SF ea.), 16 quadplex units (643 SF ea.), 3 apartment buildings (17,818 sf ea.), and clubhouse building (4,950 sf). The proposed work is located on Assessor's Map 216- Block 94, 95, & 96. The proposed scope of construction also includes a private roadway, on-site parking, clubhouse area with associated amenities, stormwater management systems, and new utility connections with their associated appurtenances.

The layout of the proposed site has been carefully planned to reduce the amount of stormwater leaving the site. The stormwater management system has been designed in accordance with the Massachusetts Stormwater Regulations to provide pretreatment of the stormwater prior to discharge.

2.0 Spill Prevention Plan

No hazardous materials other than normal cleaning items are expected to be stored on site after the construction period has ended.

It is expected that normal DEP notification procedures would be triggered for major spills such as heating oil or propane and natural gas leaks.

3.0 Stormwater System O&M

A Stormwater Operation & Maintenance plan has been prepared for the proposed stormwater management system. Refer to this document for details pertaining to the required inspections, routine maintenance and operation details.

4.0 Fertilizers, herbicides, and pesticides

Application of fertilizer, herbicides and pesticides shall be performed in a manner consistent with the industry standards for the application.

No application of chemicals is to be performed within the stormwater management areas on the site.

5.0 Snow/Salt Management

5.1 Snow Plowing

It is expected that the site will be plowed by the Groton DPW once the road is

accepted.

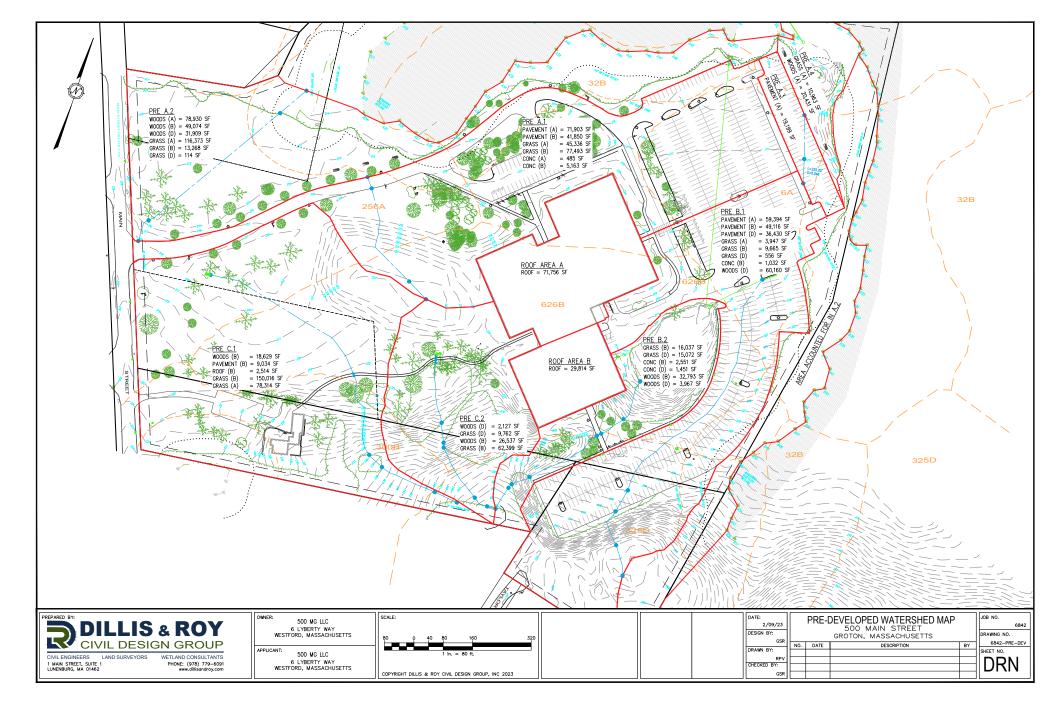
5.2 Salt/Sand Usage

It is expected that sanding and salting will be performed on an infrequent basis during times when unusually icy conditions persist for periods of time.

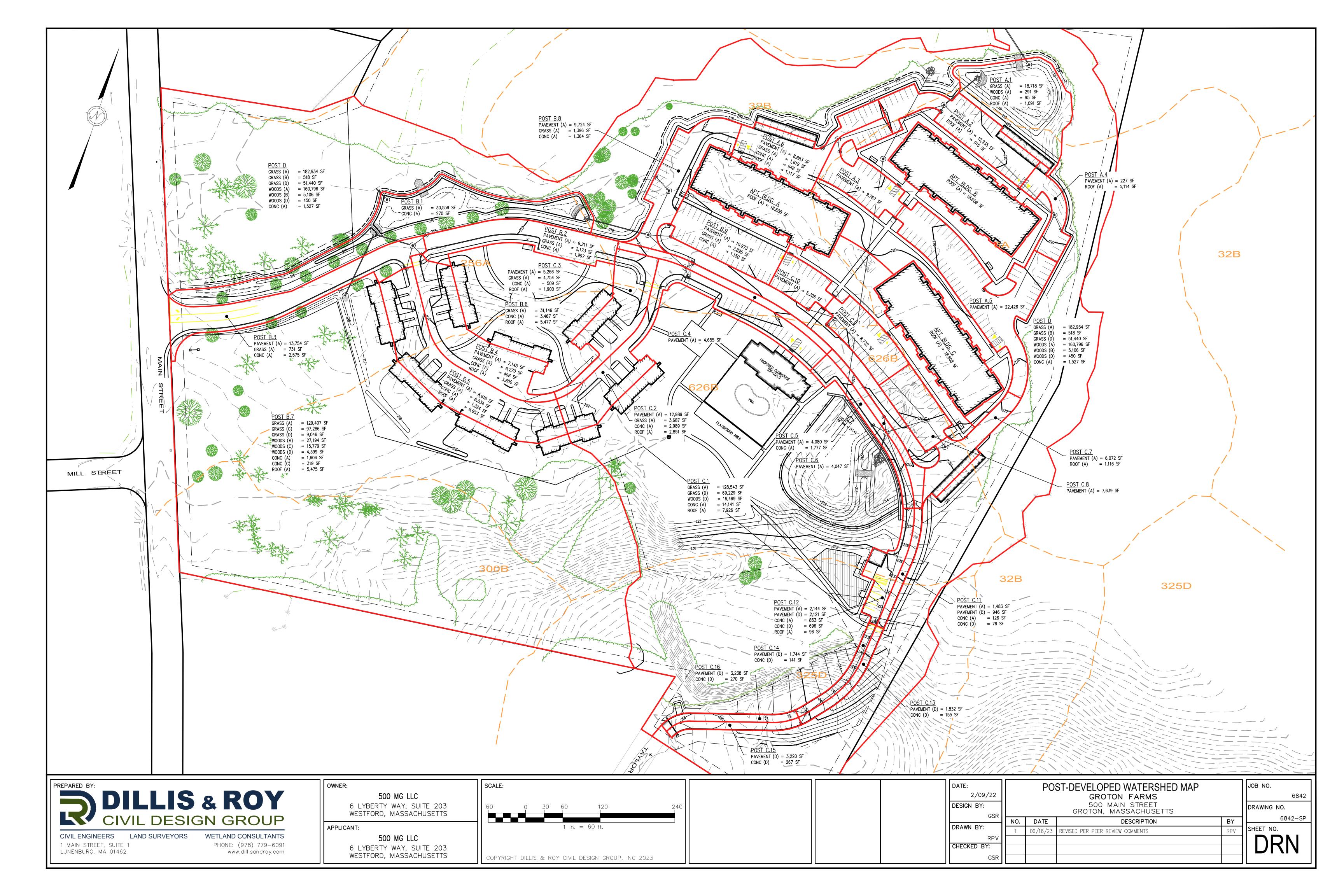
5.3 Street Sweeping

The Stormwater Operation & Maintenance Plan calls for the road and parking areas to be swept in the spring, after the threat of winter precipitation has passed.

6.0 Waste Management


6.1 Solid Waste

A dumpster will be located on the site during construction. This area will be the primary area for the on-site storage of solid waste prior to pick-up by a waste management company.


Stormwater Report 500 Main Street

4.0 Plans

Pre-development Watershed Plan

Post-development Watershed Plan

